簡易檢索 / 詳目顯示

研究生: 張雅婷
Chang, Ya-Ting
論文名稱: 單層二(硫,硒)化(鉬,鎢)薄膜的光譜性質研究
Optical studies of monolayer (Mo,W)(S,Se)2 thin films
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 過渡金屬二硫屬化合物拉曼散射光譜橢圓偏振光譜高磁場穿透光譜光譜性質
DOI URL: https://doi.org/10.6345/NTNU202204284
論文種類: 學術論文
相關次數: 點閱:278下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究過渡金屬二硫屬化合物薄膜的光譜特性。樣品以化學氣相沉積法成長於藍寶石基板,分別為單層MoS2、MoSe2及WSe2薄膜。
    首先,我們量測樣品的拉曼散射光譜,樣品皆顯示2個拉曼活性振動膜, MoS2薄膜的 和A1g振動模頻率位置分別為385.8和405.8 cm-1,MoSe2薄膜的 和A1g振動模頻率位置分別242.2和285.6 cm-1,WSe2薄膜的 和2LA(M)振動模頻率位置為250.4和261.5 cm-1。
    其次,我們量測單層MoS2與MoSe2薄膜的變溫橢圓偏振光譜,探討複數折射率及吸收係數能譜。吸收係數能譜在低能量區間顯現兩個A和B激子的吸收峰,高能量區間呈現高強度的數個吸收峰。我們使用加寬羅侖茲模型,分析樣品的激子能階,求得單層MoS2與MoSe2薄膜室溫直接能隙分別為1.92 ± 0.01與1.62 ± 0.01 eV,及室溫激子束縛能分別為0.27 ± 0.01與0.25 ± 0.01 eV。單層MoS2與MoSe2薄膜的變溫吸收能譜,直接能隙值隨著溫度升高產生紅移現象。
    最後,我們量測單層WSe2薄膜的高磁場穿透光譜,吸收光譜呈現四個吸收峰,分別為A和B激子與A和B吸收邊緣。我們主要探討A激子與A吸收邊緣。以左旋偏振光(σ-)入射時,A激子與A吸收邊緣峰值隨外加磁場呈現藍移,反之,以右旋偏振光(σ+)入射時,A激子與A吸收邊緣峰值隨外加磁場呈現紅移。外加磁場分裂布里淵區能量簡併的K與-K能谷,形成能谷的賽曼效應(Valley Zeeman effect)。

    We investigated the optical properties of monolayer transition metal dichalcogenides thin films (MoS2, MoSe2 and WSe2). These samples were deposited on the sapphire substrates by using chemical vapor deposition (CVD).

    We first measured the Raman scattering spectra of all thin films. The spectra are composed of two strong phonon modes. For MoS2 thin film, the frequencies of the E2g1 and A1g phonon modes are approximately 358.8 and 405.8 cm-1, while for MoSe2 thin film, they are about 242.2 and 285.6 cm-1. For WSe2 thin films, the frequencies of E2g1 / A1g and 2LA(M) phonon modes are approximately 250.4 and 261.5 cm-1.

    Secondly, we measured the temperature dependence of ellipsometric spectra of monolayer MoS2 and MoSe2 thin films. The absorption spectra show two exciton peaks (A and B) at low photon energies and several strong optical absorptions at higher photon energies. We used broadened Lorentzian model to analyze the exciton energy states. At room temperature, the monolayer MoS2 and MoSe2 thin films exhibit direct band gap approximately 1.92 ± 0.02 and 1.62 ± 0.02 eV and exciton binding energy of 0.27 ± 0.02 and 0.25 ± 0.02 eV. With increasing temperature, the band gap is red shifted.

    Finally, we measured the optical transmittance spectra of monolayer WSe2 thin film under high magnetic fields. The zero-field absorption spectrum shows four absorption peaks, including A, B exciton and A, B band edge. For the left circularly polarized light, the peak positions of A exciton and A band edge are blue shifted with increasing magnetic field. By contrast, they are red shifted by using the right circularly polarized light. These splittings demonstrate that an applied magnetic field breaks the valley degeneracy (the ±K valley) at the corners of hexagonal Brillouin zone, resulting in the valley Zeeman effect.

    致謝 i 摘要 iii Abstract v 目錄 vii 圖目錄 viii 表目錄 xv 第一章 緒論 1 第二章 研究背景 3 第三章 實驗儀器設備及基本原理 26 3-1 光譜儀系統 26 3-3 電磁波在介質中的傳遞 33 第四章 樣品製備與特性 45 4-1 樣品製備 45 4-2 樣品特性 46 第五章 實驗結果與討論 55 5-1單層MoS2與MoSe2薄膜的變溫光譜性質 55 5-2 單層WSe2薄膜外加磁場的光譜性質 61 第六章 結論與未來展望 95 參考文獻 97

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666 (2004).
    [2]B. Radisavljevic, A. Radenovic, J. Brivio1, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotech. 6, 147 (2011).
    [3]陳昶孝、李連中著,二維異質材料:合成及應用,奈米通訊,21卷,NO. 3. 2014年。
    [4]G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden,W. Yao, and X. Xu, “Magnetic control of valley pseudospin in monolayer WSe2”, Nature Phys. 11, 148 (2015).
    [5]A. V. Stier, K. M. McCreary, B. T. Jonker, J Kono, and S. A. Crooker, “Exciton diamagnetic shifts and valley zeeman effects in monolayer WS2 and MoS2 to 65 tesla”, Nature Commun. 7, 10643 (2015).
    [6]G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2”, Nano Lett. 11, 5111 (2011).
    [7]D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides”, Phys. Rev. Lett. 108, 196802 (2012).
    [8]K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2:A new direct-gap semiconductor”, Phys. Rev. Lett. 105, 136805 (2010).
    [9]E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernde, J. Tedd, J Pouzet, and J. Salardenne, “MS2 (M = W, Mo) photosensitive thin films for solar cells”, Sol. Energy Mater. Sol. Cells 46, 115–121 (1997).
    [10]M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer Materials”, Nano Lett. 13, 3664 (2013).
    [11]K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity”, Nature Nanotechnol. 7, 494 (2012).
    [12]A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2”, Nano Lett. 10, 1271 (2010).
    [13]Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature Nanotech. 7, 699 (2012).
    [14]K. Kosmider, J. W. Gonzalez, and J. F. Rossier, “Large spin splitting in the conduction band of transition metal dichalcogenide monolayers”, Phys. Rev. B 88, 245436 (2013).
    [15]K. Matsuda, “Optical properties of atomically thin layered transition metal dichalchogenide”, J. Phys. Soc. Jpn. 84, 121009 (2015).
    [16]I. Kylanpaa and H. P. Komsa, “Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment”, Phys. Rev. B 92, 205418 (2015).
    [17]M. M. Ugeda, A. J. Bradley, S. F. Shi,D. Kozawa, R. Kumar, A. Carvalho, K. K. Amara., W. Zhao, S. Wang, M. Toh, R. M. Ribeiro, A. H. C. Neto, K. Matsuda, and G. Eda, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor”, Nature Mater. 13, 1091 (2014).
    [18]D. Kozawa, R. Kumar, A. Carvalho, K. K. Amara, W. Zhao, S. Wang, M Toh, R. M. Ribeiro, A. H. C. Neto, K. Matsuda and G. Eda, “Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides”, Nature Commun. 5, 4543 (2014).
    [19]K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2”, Nature Material 12, 207 (2013).
    [20]Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman and T. F. Heinz, “Observation of biexcitons in monolayer WSe2”, Nature Phys. 11, 477 (2015).
    [21]X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides”, Nature Phys. 10, 343 (2014).
    [22]A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao., W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2”, Nature Nanotech. 8, 634 (2013).
    [23]A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, “Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire”, Phys. Rev. B 93, 165412 (2016).
    [24]A. A. Mitioglu, P. Plochocka, Á. Granados del Aguila, P. C. M. Christianen, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields”, Nano Lett. 15, 4387 (2015).
    [25]T Goto, Y Kato, K Uchida and N Miura, “Exciton absorption spectra of MoS2 crystals in high magnetic fields up to 150 T”, J. Phys.: Condens. Matter 12, 6719 (2000).
    [26]鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,民國八十年五月,第一版。
    [27]M Schreiner, Handbook on the use of lasers in conservation and conservation science (Brussels, Belgium , 2008).
    [28]S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy”, Small 13, 2589 (2014).
    [29]Y. H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu, J. K. Chang, W. T. Hsu, J. K. Huang, C. L. Hsu, M. H. Chiu, T. Takenobu, H. Li, Chih-I Wu, W. H. Chang, A. T. S. Wee, and L. J. Li, “Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection”, ACS Nano 8, 8582 (2014).
    [30]J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications”, ACS Nano 8, 923 (2014).
    [31]Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition”, Adv. Mater. 24, 2320 (2012).
    [32]Y. H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C. T. Lin, J. K. Huang, M. T. Chang, C. S. Chang, M. Dresselhaus, T. Palacios, L. J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces”, Nano Lett. 12,1852 (2013).
    [33]M. N. Avadhanulu and P. G. Kshirsagar, A Textbook of Engineering Physics (S. Chand Publishing, 1992).
    [34]Y. Cai, J. Lan, G. Zhang, and Y. W. Zhang, “Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2”, Phys. Rev. B 89, 035438 (2014).
    [35]葉秦維,摻雜鑭系元素(鏑,釓)氧化鋅與單層二(硫,硒)化鎢薄膜的光譜性質研究,國立臺灣師範大學物理研究所碩士論文,104年6月。
    [36]S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2”, Nano Lett. 12, 5576 (2012).
    [37]K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2:optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2”, Nanoscale 6, 13028 (2014).
    [38]B. Zhu, X. Chen, and X. Cui, “Exciton binding energy of monolayer WS2”, Scientific Reports 5, 9218 (2015).
    [39]A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides:II. Group VIA:Trigonal prismatic coordination”, J. Phys. C: Solid State Phys. 5, 3540 (1972).
    [40]C. C. Shen, Y. T. Hsu, L. J. Li, and H. L. Liu, “Charge dynamics and electronic structures of monolayer MoS2 films grown by chemical vapor deposition”, Appl. Phys. Express 6, 125801 (2013).
    [41]C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of band profile in single layer MoS2 on graphite:quasiparticle energy gap, metallic edge states, and edge band bending”, Nano Lett. 14, 2443 (2014).
    [42]H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M. Y. Li, and L. J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry”, Appl. Phys. Lett. 105, 201905 (2014).
    [43]R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors”, Phys. Stat. Sol. (b) 236, 710 (2003).
    [44]S. Logothetidis, J. Petalas, M. Cardona, and T. D. Moustakas, “Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN”, Phys. Rev. B 50, 18017 (1994).
    [45]K. P. Donnell and X. Chen, “Temperature dependence of semiconductor band gaps”, Appl. Phys. Lett. 58, 24 (1991).
    [46]H. Terrones, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, and Z. Lin, “New first order Raman-active modes in few layered transition metal dichalcogenides”, Scientific Reports 4, 4215 (2014).
    [47]M. S. Skolnick, J. M. Rorison, K. J. Nash, D. J. Mowbray, P. R. Tapster, S. J. Bass, and A. D. Pitt, “Observation of a many-body edge singularity in quantum-well luminescence spectra”, Phys. Rev. Lett. 58, 20 (1987).
    [48]A. Ramasubramaniam, “Large excitonic effects in monolayer of molybdenum and tungsten dichalcogenides”, Phys. Rev. B 86, 115409 (2012).
    [49]J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Linc, and B. Xiang, “Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications”, Nanoscale 7, 4193 (2015).
    [50]C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition”, ACS Nano 8, 11147 (2014).
    [51]R. Enderlein and N. J. Horing, “Fundamental of semiconductor physics and devices”, World Scientific (1997).
    [52]H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, “Large area growth and electrical properties of p‑type WSe2 atomic layers”, Nano lett. 15, 709 (2015).
    [53]G.Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko, E. Palleau, X. Marie, and B. Urbaszek, “Magneto-optics in transition metal diselenide monolayers”, 2D Mater. 2, 034002 (2015).

    下載圖示
    QR CODE