簡易檢索 / 詳目顯示

研究生: 芮瑋呈
Ray, Wei-Cheng
論文名稱: 超薄氧化銦基電晶體製程
Manufacturing Process of Ultra-thin Indium Oxide-Based Transistors
指導教授: 李敏鴻
Lee, Min-Hung
口試委員: 李敏鴻
Lee, Min-Hung
廖洺漢
Liao, Ming-Han
陳奕君
Cheng, I-Chun
口試日期: 2023/07/24
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 43
中文關鍵詞: 氧化銦摻鎢(IWO)氧化銦(In2O3)鐵電材料
英文關鍵詞: W-doped In2O3(IWO), Indium oxide(In2O3), ferroelectric material
研究方法: 實驗設計法準實驗設計法次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202301708
論文種類: 學術論文
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電晶體的微縮持續發展,處理器核心速度提升為 Moore Law(摩爾定律),但整體性能的系統與能量消耗問題仍存在瓶頸,記憶體與邏輯內核間數據流量大幅上升,造成功耗損失迫使處理器增加等待數據時間,為了解決此瓶頸利用3DIC(積層型三維積體電路)的異質整合來達成computing-in-memory(CIM)記憶體內運算,並且(Monolithic 3D;M3D) 單體3D有高密度的優勢。除了傳統半導體Poly-Si,氧化物半導體作為通道選擇,具有製程相容性,以免除磊晶高成本低產出缺點,並且氧化物半導體具有低溫製程的優勢,所以能應用在後段製程(BEOL-Back end of line),此實驗成功濺鍍10nm In2O3(氧化銦) 材料作為通道於鐵電容整合打造出M3D垂直立體結構元件,且在BEOL製程的應用,並以量測結果證實閘極閾值電壓(ID-VG)成功繞出順時鐘的路徑轉換至逆時鐘的路徑,具有鐵電的特性。鐵電電場與極化,P-V量測結果,成功繞出PV-Loop鐵電遲滯曲線,證實In2O3與鐵電容整合的元件,具有鐵電的電容。另外為了改善In2O3通道材料,增加製程上熱預算的限制,成功濺鍍超薄2nm IWO(氧化銦摻鎢)於薄膜電晶體的元件,並有極好電流開關比達到>107 以及很高的載子遷移率10.64 cm2/V-s,IWO作為通道材料,未來應用於BEOL的M3D有很大的潛力,有望大幅提升未來元件的效能。

    Due to the continuous development of transistor miniaturization, the processor core speed has been increased by Moore's Law, but there is still a bottleneck in the overall performance of the system and the energy consumption problem. The data traffic between memory and logic cores has increased dramatically, which results in the loss of power consumption and forces the processor to increase the waiting time for data. Computing-in-memory (CIM) and Monolithic 3D (M3D) have the advantage of high density. In addition to the traditional semiconductor Poly-Si, oxide semiconductor as a channel choice, with process compatibility, to eliminate the epitaxial high cost and low yield shortcomings, and oxide semiconductor has the advantage of low-temperature process, so it can be applied in the back end of the line (BEOL-Back end of line), this experiment successfully sputtering 10nm In2O3 material as a channel in the ferroelectric capacitors. This experiment successfully sputtered 10nm In2O3 material as a channel in ferroelectric capacitor to create M3D vertical three-dimensional structure components, and applied in BEOL process, and the measurement results confirmed that the gate threshold voltage (ID-VG) was successfully converted from clockwise path to anticlockwise path, which has the characteristics of ferro-electric. Ferro-electric field and polarization, P-V measurement results, successfully winding the PV-Loop ferro-electric hysteresis curve, proving that the integration of In2O3 and ferroelectric capacitance of the component has the capacitance of ferro-electricity. In addition, in order to improve the In2O3 channel material and increase the limitation of thermal prediction in the process, we have successfully sputtered Ultra-thin 2nm IWO(In2O3 doped in W) on thin-film transistor components with excellent current-switching ratios up to >107 and a very high carrier mobility of 10.64 cm2/V-s. As a channel material, the future application of IWO for BEOL M3D has great potential, and is expected to significantly improve the performance of future components. Enhance the performance of future components

    第一章 緒論 1 1-1 金屬氧化物半導體場效電晶體(OS-FET)簡介 1 1-2 OS-FET摻雜比例特性與應用 2 第二章 氧化銦摻鎢(IWO)論文回顧與電晶體製程 3 2-1 氧化銦摻鎢(IWO)的文獻回顧 3 2-2 離子氧化物半導體起源 4 2-3 氧化物半導體結合鐵電與展望 5 2-4 氧化銦(In2O3)的文獻回顧 7 2-5 IWO主要濺鍍機台製程介紹 9 2-6 IWO電晶體製程流程 11 2-7  IWO 電晶體製程清洗流程 12 2-8  IWO調整不同流量與功率厚度 AFM(原子力顯微鏡) 21 2-8-1 IWO TFT 材料分析TEM(穿透式電子顯微鏡) 22 2-8-2 IWO TFT 材料分析EDS(能量射散X-射線光) 22 第三章 氧化銦摻鎢(IWO)電晶體電性表現 23 3-1-1 IWO TFT 150℃退火固定功率,調整不同流量ID-VG 23 3-1-2 IWO TFT 150℃退火固定功率,調整不同流量ID-VD 24 3-1-3 IWO TFT 150℃退火調變功率,固定流量ID-VG 25 3-1-4 IWO TFT 150℃退火調變功率,固定流量ID-VD 26 3-1-5 IWO TFT 150℃退火固定功率,調整不同流量之載子遷移率 27 3-1-6 IWO TFT 150℃退火固定功率,調整不同流量之載子遷移率 28 3-1-7 IWO TFT不同條件溫度退火ID-VG 29 3-1-8 IWO TFT 不同閘極長度 載子遷移率 30 3-1-9 IWO TFT 不同閘極長度 VT變化 31 3-1-10 IWO TFT 耐久度測試ID-VG 32 3-1-11 IWO TFT 施加正偏壓不同時間 ID-VG 33 第四章 In2O3 電晶體與鐵電材料整合製程 34 4-1 In2O3電晶體與鐵電材料整合之製程流程圖(Flow process) 34 4-2 In2O3 整合鐵電材料前段製程(Front -end process) 35 4-2-1 In2O3整合鐵電材料後段製程(Back -end process) 35 4-2-2 In2O3 電晶體與鐵電材料整合製程 36 4-2-3 In2O3 電晶體與鐵電材料整合元件的電性表現 37 第五章 總結與未來工作 38 5-1總結&未來工作 38 參考文獻 39 Pubilcations 42

    [1] Vita P.-H. Hu, H.-H. Lin, Z.-A. Zheng, Z.-T. Lin, Y.-C. Lu, T.-Y. Ho, Y.-W. Lee, C.- W. Su and C.-J. Su, "Split-Gate FeFET (SG- FeFET) with Dynamic Memory Window Modulation for NonVolatile Memory and Neuromorphic Applications," Symposium on VLSI Technology, 2019, pp. T134-T135.

    [2] W. Chakraborty, B. Grisafe, H. Ye, I. Lightcap, K. Ni and S. Datta, "BEOL Compatible Dual-Gate Ultra Thin-Body W-Doped Indium-Oxide Transistor with Ion = 370μA/μm, SS = 73mV/dec and Ion /Ioff Ratio > 4×109," IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265064.

    [3] Vita P.-H. Hu, H.-H. Lin, Z.-A. Zheng, Z.-T. Lin, Y.-C. Lu, T.-Y. Ho, Y.-W. Lee, C.-W. Su and C.-J. Su, "Split-Gate FeFET (SG-FeFET) with Dynamic Memory Window Modulation for NonVolatile Memory and Neuromorphic Applications," Symposium on VLSI Technology, 2019, pp. T134-T135.

    [4] Y. -C. Luo, S. Datta and S. Yu, "Three-dimensional (3D) Non-volatile SRAM with IWO Transistor and HZO Ferroelectric Capacitor," International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 2021, pp. 1-2, doi: 10.1109/VLSI-

    [5] M. Si, Z. Lin, Z. Chen and P. D. Ye, "High-Performance Atomic-Layer-Deposited Indium Oxide 3-D Transistors and Integrated Circuits for Monolithic 3-D Integration," in IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6605-6609, Dec. 2021, doi: 10.1109/TED.2021.3106282.

    [6] P. -Y. Kuo, C. -M. Chang and P. -T. Liu, "Low Thermal Budget Amorphous Indium Tungsten Oxide Nano-Sheet Junctionless Transistors with Near Ideal Subthreshold Swing," IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2018, pp. 21-22, doi: 10.1109/VLSIT.2018.8510684.

    [7] M. Si, A. Charnas, Z. Lin, and P. D. Ye, “Enhancement-mode atomic-layer-deposited In2O3 transistors with maximum drain current of 2.2 A/μm at drain voltage of 0.7 V by low-temperature annealing and stability in hydrogen environment,” IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1075-1080, Mar. 2021, doi: 10.1109/TED.2021.3053229.

    [8] M. Si, Y. Hu, Z. Lin, X. Sun, A, Charnas, D. Zheng, X. Lyu, H. Wang, K. Cho, and P. D. Ye, “Why In2O3 can make 0.7 nm atomic layer thin transistors,” Nano Letters, vol.21,no.1,pp. 500-506, Jan. 2021, doi: 10.1021/acs.nanolett.0c03967.

    [9] Z.-F. Lou, C.-Y. Liao, K.-Y. Hsiang, C.-Y. Lin, J.-Y. Lee, P.-H. Chen, W.-C. Ray, Z.-X. Li, H.-C. Tseng, F.-S. Chang, C.-C. Wang, J.-H Tsai, M.-H. Liao, and M. H. Lee, “Demonstration of ultra-thin sub-10 nm indium oxide (In2O3) field-effect-transistors (FETs) by sputtering deposition with annealing-free toward BEOL memory applications,” in 2022 International Conference on Solid State Devices and Materials (SSDM), Chiba, Japan, Sept. 26‒29, 2022.

    [10] H. Ye et al., "Double-Gate W-Doped Amorphous Indium Oxide Transistors for Monolithic 3D Capacitorless Gain Cell eDRAM," IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 28.3.1-28.3.4, doi: 10.1109/IEDM13553.2020.9371981.

    [1] Z. F. Lou, C. Y. Liao, K. Y. Hsiang, C. Y. Lin, J. Y. Lee, P. H. Chen, W. C. Ray , X. Li, H. C. Tseng, F. S. Chang, C. C. Wang, J. H Tsai, M. H. Liao,and M. H. Lee, “Demonstration of ultra thin sub 10 nm indium oxide (In 2 O 3 ) field effect transistors (FE Ts) by sputtering deposition with annealing free
    toward BEOL memory applications,” in International Conference on Solid State Devices and Materials (SSDM) SSDM), Chiba, Japan, Sept. 26 29, 2022

    [2]( EI) C. Y. Liao, K. Y. Hsiang, Z. F. Lou, C. Y. Lin, Y. J. Tseng, H. C. Tseng, Z. X. Li, W. C. Ray, F. S. Chang, C. C. Wang, T. C. Chen, C. S. Chang, and M. H. Lee, “Multipeak coercive electric field based multilevel cell nonvolatile memory with antiferroelectric ferroelectric field effect transistors (FETs ),” IEEE Trans. Ultrason., Ferroelectr i c ., Freq. Control , v ol. 69, no. 6, pp. 2214 2221, Jun. 2022.

    [3] C. Y. Liao, K. Y. Hsiang, Z. F. Lou, C. Y. Lin, W. C. Ray , S. Chang, C. C. Wang, Z. X. Li, H. C. Tseng, J. Y. Lee, P. H. Chen, J. H. Tsai, P G. Chen, and M. H. Lee, “Dual mode GaN MOS HEMT of cascode configuration with Si ferroelectric Hf 1 x Zr x O 2 FET,” in Proc. IEEE Silicon Nanoelectron. Workshop ( SNW), Haw aii, Jun. 11 12, 2022

    [4] J Y. Lee, K. Y. Hsiang, C. Y. Liao, Z. F. Lou, C. Y. Lin, S. L. Tang, F. S. Chang, Z. X. Li, W. C. Ray , C. Tseng, C. C. Wang, M. H. Liao, C. W. Liu, and M. H. Lee, “Nanosecond laser annealing based wake up of ferroelectric
    HfZrO22 capacitors for BEOL compatible and high throughput FeRAM,” in capacitors for BEOL compatible and high throughput FeRAM,” in International Conference on Solid State Devices and Materials International Conference on Solid State Devices and Materials (SSDM)(SSDM), Chiba, , Chiba, Japan, Sept. 26Japan, Sept. 26‒‒29, 2022.29, 2022.

    [5] C. Y. Liao, Z. F. Lou, C. Y. Lin, A. Senapati, R. Karmakar, K. Y. Hsiang, Z. X.Li, W. C. Ray , Y. Lee, P. H. Chen, F. S. Chang, H. H. Tseng, C. C. Wang, J. H.Tsai, Y. T. Tang, S. T. Chang, C. W. Liu, S. Maikap*, and M. H. Lee*, “Superlattice HfO 2 ZrO 2 based Ferro Stack HfZrO 2 FeFETs: Homogeneous Domain Merits Ultra Low Error, Low Programming Voltage 4 V and Robust Endurance 10 9 cycles for Multibit NVM, ” accepted by Technical Digest, International Electron Device Meeting (IEDM), San Francisco, Dec. 3 7, 2022

    [6] C. Y. Liao, K. Y. Hsiang, Z. F. Lou, H. C. Tseng, C. Y. Lin, Z. X. Li, F. C. Hsieh, C. C. Wang, F. S. Chang, W. C. Ray , Y. Tseng, S. T. Chang, T. C. Chen, and M. H. Lee*, “Endurance > 10 11 Cycling of 3D GAA Nanosheet Ferroelectric FET with Stacked HfZrO 2 to Homogenize Corner Field Toward Mitigate Dead Zone for High Density eNVM, ” Symposia on VLSI Technology and Circuits, pp. 393 394, Honolulu, Hawaii, 12 17, June, 2022.

    無法下載圖示 本全文未授權公開
    QR CODE