研究生: |
許燕欣 Yen-Hsin Hsu |
---|---|
論文名稱: |
不同數位模擬對國小電磁作用單元體驗式學習之成效與動機的影響 The Effect of Experiential Digital Simulation on Elementary School Students’ Performance in Learning Electromagnetic Concepts |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 電磁作用 、數位模擬 、科學情感投入 、體驗式學習 |
英文關鍵詞: | electromagnetic concepts, digital simulation, experiential learning, science affective engagement |
論文種類: | 學術論文 |
相關次數: | 點閱:170 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究融合體驗式學習,探討不同的數位模擬(電腦模擬、擴增實境模擬)與科學情感投入(高科學情感投入、低科學情感投入)對於國小五年級學習者,學習電磁作用單元之學習成效與動機的影響,並探究學習者運用資訊科技學習科學的感受。研究之對象為國小五年級學習者,共計106人參與實驗教學。研究採因子設計之準實驗研究,自變項有分別為「數位模擬」與「科學情感投入」。「數位模擬」根據學習者在學習歷程中使用數位模擬方式的不同,分為「電腦模擬」與「擴增實境模擬」,「電腦模擬」是以桌上型電腦來進行,學習的環境為完全虛擬的情境,「擴增實境模擬」則是以平板電腦來進行,學習的環境為整合現實與虛擬的情境來進行。「科學情感投入」係指學習者學習科學的情感投入感受,量表分數越高者代表學習之科學情感投入越高,反之則越低。本研究依變項有三,分別為「電磁作用單元學習成效」、「電磁作用單元ARCS學習動機」與「科技態度」。
本研究結果依電磁作用單元學習成效、電磁作用單元ARCS學習動機與科技態度三個面向,綜合歸納如下:(1)擴增實境模擬比電腦模擬更能提高學習者的知識應用表現;(2)在數位模擬學習環境中,學習者皆抱持正向的ARCS學習動機,其中,高科學情感投入學習者的ARCS學習動機優於低科學情感投入學習者;(3)擴增實境模擬更能提高學習者行為投入的表現,此外,高科學情感投入學習者抱持較高的科技態度。
The purpose of this study was to investigate the effects of experiential digital simulation and science affective engagement on senior high school students’ performance in learning electromagnetic concepts. There were 106 fifth graders participated in the experimental learning activity. A quasi-experimental design was employed for this study. The independent variables of this research were digital simulation and affective engagement toward learning science. The digital simulations included computer simulation and augmented reality simulation. Participants’ affective engagement toward learning science was identified as either high affective engagement or low affective engagement. The dependent variables were learning performance, learning motivation as measured by ARCS, and technology attitudes.
The result revealed that (a) the augmented reality simulation facilitated learners’ learning performance better than the computer simulation; (b) both digital simulation environments had positive impacts on learners’ ARCS motivation; learners with high affective engagement achieved more positive learning motivation as measured by ARCS; the augmented reality simulation enhanced learners’ ARCS motivation better than the computer simulation; and (c) the augmented reality simulation had positive impacts on learners’ behavior engagement; learners with high affective engagement achieved more positive technology attitudes.
一、中文部分
王華沛、黃玲瑗、廖淑戎、蔡怡寧 (2004)。虛擬實境在特殊教育教學之應用。國教天地(屏師),156。9-17。
王嘉德 (2004)。以動態評量探究國小五年級學童「電與磁」的概念學習。國立臺北教育大學自然科教育研究所碩士論文,未出版,臺北市。
王麗君 (2009)。體驗式遊戲策略與個別差異對初學者程式語言學習之探討。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
王耀宗 (2012)。擴增實境融入探究式行動學習系統之設計─以博物館無縫式學習為例。國立臺灣師範大學科技應用與人力資源發展研究所碩士論文,未出版,臺北市。
吳心楷、吳百興、張耀云 (2010)。科學探究活動中的科學推理。科學教育研究與發展季刊,56,53-74。
李京翰 (2012)。數位學習環境知回饋策略與性別對國中生化學酸鹼中和單元學習之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
林秀美(1998)。電腦模擬在科技教育上之應用。教學科技與媒體,42,23-31。
林明軫 (1993)。國小學童磁鐵與磁利性質迷思概念之初探。臺南師院學生學刊,15,223-250。
林奇賢(1995)。電腦模擬在國民中小學教學上的應用。國民中小學資訊教育課程與實務研討會論文集,台北市:教育部。
林燕青、林靜雯(2010)。2004-2008 年科學教育研究與發展季刊內容分析。科學教育研究與發展季刊,56,1-28。
林懿行 (2009)。不同體驗式探究教學策略對國小學童科學歸納能力與學習成效相關之研究~以種植植物為例。國立臺北教育大學自然科學教育研究所碩士論文,未出版,臺北市。
邱美虹 (2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
高雄市政府教育局網站。體驗學習之源起及意義。取自http://www.ccunix.ccu.edu.tw/~shlin/Service%20Learning/experience%20learning.pdf
高慧蓮 (2006)。九年一貫課程提升學生科學本質能力指標表現可行教學模組織開發研究。科學教育學刊,14(4),401-425。
孫光天、林勇成(2003)。網路虛擬實驗室融入五年級自然領域教學之研究。南師學報,37,33-57。
時德平 (2001)。概念構圖教學策略與食譜式教學法對國小五年級學童「電與磁」的概念學習之比較性研究。國立臺北師範學院數理教育研究所碩士論文,未出版,臺北市。
張春興 (2007)。教育心理學:三化取向的理論與實踐(修訂二版)。臺北市:東華。
張霄亭(1995)。教學媒體與教學新科技。台北市:心理。
張智偉 (2006)。結合Edison電腦模擬的類比學習環融入國中直流電路學習成效之研究。國立彰化師範大學物理研究所論文,未出版,彰化市。
教育部 (2008)。97年國民中學九年一貫課程綱要。臺北市:教育部。
陳金珠 (2008)。體驗式探究教學的模組設計與教學研究。國立臺北教育大學自然科學教育研究所碩士論文,未出版,臺北市。
陳郁雯(2004)。電腦模擬對學生學習成效影響之後設分析。國立新竹教育大學國民教育研究所碩士論文,未出版,新竹縣。
黃竹坤(2001)。應用模擬動畫於國中理化輔助教學之研究。國立高雄師範大學物研究所碩士論文,未出版,高雄市。
黃福坤 (2006)。透過物理模擬動畫進行物理教學與學習-介紹簡易模擬動畫設計環境Easy Java Simulation。物理雙月刊,28,536-543。
楊志強 (2001)。國小五年級學童「電磁鐵」單元教學之概念改變研究。國立屏東師範學院數理教育研究所碩士論文,未出版,屏東縣。
楊進忠 (2005)。以融入動態評量的實作教學策略探究國小六年級學童「電磁作用」概念之概念學習。國立臺北教育大學自然科教育研究所碩士論文,未出版,臺北市。
葉誌鑑 (2001)。國小高年級學童電磁鐵概念分析之研究。臺北市立師範學院科學教育研究所碩士論文,未出版,臺北市。
廖美婷 (2012)。探討建模教學中不同階段融入電腦模擬與實驗活動對於學生光的折射與透鏡學習成效之影響。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化縣。
鄭如琳 (1999)。國小教師實施「探究-建構教學模式」之行動研究-從「磁」的概念談起。國立臺北師範學院課程與教學研究所碩士論文,未出版,臺北市。
歐宛兒 (2012)。遊戲策略對國小學生磁力概念學習的影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
蘇義賢 (2007)。電腦模擬教學在高中生活科技之應用-以室內配線教學為例。國立嘉義大學教育科技研究所碩士論文,未出版,嘉義線。
羅怡帆 (2012)。體驗式遊戲策略與數學學習信心對國中生比例式課程學習之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。
臺灣PISA國家研究中心(2011)。科學應試指南。取自 http://pisa.nutn.edu.tw/download/sample_papers/2009/2011_1205_guide_science.pdf
臺灣PISA國家研究中心(2011)。臺灣參加PISA 2006成果報告。取自 http://pisa.nutn.edu.tw/download/2006pisa/2006PISA.pdf
二、英文部分
Alessi, S. M., &; Trollip, S. R. (2001). Multimedia for learning: methods and development. Boston : Allyn and Bacon.
Andujar, J. M., Mejias, A., & Marquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492-500.
Azuma, R. T. (1997). A survey of augmented reality. Teleoperators and Virtual Environments, 6, 355-385.
Barrow, L. (1990). Elementary science textbooks and potential magnet misconceptions. School Science and Mathematics, 90(8), 716-720.
Barrow, L. (2000). Do elementary science methods textbooks facilitate the understanding of magnet concepts? Journal of science Education and Technology, 9(3),199-205.
Borko, F. (2011). Evaluating Augmented Reality Systems. Handbook of augmented reality, 1, 289-307.
Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learning: Testing the linkages. Research in Higher Education, 47(1), 1-32.
Chapman, E. (2003). Alternative approaches to assessing student engagement rates. Practical Assessment, Research and Evaluation, 13(8), 1-7.
Collette, A. T. & Chiapetta, E. L. (1994). Science instruction in the middle and secondary schools (3rd ed.). New York: Maxwell Macmillan.
Connell, J. P. & Wellborn, J. G. (1991). Competence, autonomy and relatedness: A motivational analysis of self-system processes. Minnesota Symposium on Child Psychology, 22, 43-77.
Deci, E. L. &; Ryan, R. M. (2002). Handbook of self-determination research. New York: University of Rochester.
Dewey, J. (1983). Human nature and conduct. In J. A. Boydston (Ed.). The middle works of John Dewey (vol.14, pp.1899-1924). Carbondale and edwardsville, IL: Southern Illinois University.
DiGisi, L. L. & Willett, J. B. (1995).What high school biology teacher say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123-142.
Elliott, J. G., Hufton, N. R., Willis, W., & Illushin, L. (2005). Motivation, engagement and educational performance: International perspectives on the contexts for learning. New York, NY: Palgrave Macmillan.
Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., &; Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students’ conceptual learning about pulleys. International Conference of the Learning Sciences, 1, 937-943.
Greene, T. G., Marti, C. N., & McClenney, K. (2008). The effort-outcome gap: differences for African American and Hispanic community college students in student engagement and academic achievement. The Journal of Higher Education, 79(5), 513-539.
Heinich, R., Molenda, M., Russell, J. D., &; Smaldino, S. E. (1999). Instructional media and technologies for learning. Upper Saddle River, NJ: Merrill/Prentice Hall.
Hu, S., Kuh, G. D., & Li, S. (2008). The effects of engagement in inquiryoriented activities on student learning and personal development. Innovative Higher Education, 33(2), 71-81.
Huppert, J., Yaakobi, J., &; Lazarovvitz, R. (1998). Learning microbiology with computer simulations: Students’ academic achievement by method and gender. Research in Science &; Technological Education, 16(2), 231-245.
Jaakkola, T., &; Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271-283. doi: 10.1111/j. 1365-2729.2007.00259.x
Juan, C. M. (2009). Augmented reality and tangible interfaces for learning. Advance Learning, 153-166.
Juan, C. M., Toffetti, G., Abad, F., & Cano, J. (2010). Tangible cubes used as the user interface in an augmented reality game for edutainment. 2010 IEEE 10th International Conference on Advanced Learning Technologies (ICALT ) (pp. 599-603). Sousse, Tunisia.
Keller, J. M. (2006). Motivation and Performance. In Reiser & Dempsey (Eds). Trends and issues in instructional design and technology (pp. 82-92). New Jersey: Prentice Hall.
Kempa, R. F. (1991). Students’ learning difficulties in science. Causes and possible remedies. Enseñanza de las Ciencias, 9 (2), 119-128.
Kennedy, E. (2010). Narrowing the achievement gap: Motivation, engagement, and self-efficacy matter. Journal of Education, 190(3), 1-11.
Kolb, A. Y. &; Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning &; Education, 4(2), 193-212.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. New Jersey: Prentice-Hall.
Kuh, G. D., Kinzie, J., Schuh, J. H., & Whitt, E. J. (2005). Assessing conditions to enhance educational effectiveness: The inventory for student engagement and success. San Francisco: Jossey-Bass.
Lee, J. (1999). Effectiveness of Computer-based instruction simulation: A meta-analysis. International Journal of Instructional Media, 26(1), 71-85.
Liu, T. Y., Tan, T. H., & Chu, Y. L. (2009). Outdoor natural science learning with an RFID-supported immersive ubiquitous learning environment. Educational Technology & Society, 12(4), 161-175.
Michael, J. F., Angela, D. W., Grace, S. J., Jenne, S., Alicia, S., Sandy, P. (2003). Multiple contexts of school engagement: Moving toward a unifying framework for educational research and practice. The California School Psychologist, 8, 99-115.
Pierce, R., Stacey, K., &; Barkatsas, A. (2007). A scale for monitoring students’ attitudes to learning mathematics with technology. Computers &; Education, 48(2), 285-300.
Roblyer, M. D. (2003). Integrating educational technology into teaching. Upper Saddle River, NJ: Merrill/Prentice Hall.
Skinner, E. A. & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85, 571-581.
Stephan, J. (1994). Targeting students science misconceptions: Physical science activities using the conceptual change model. Riverview, Florida: The Idea Factory.
Tabachnick, B. G., &; Fidell, L. S. (2006). Using Multivariate Statistics (5th Ed.). Pearson International Edition: Allyn and Bacon.
Tarng, W. & Ou, K. L. (2012). A study of campus butterfly ecology learning system based on augmented reality and mobile learning. Seventh IEEE International Conference on Wireless, Mobile and Ubiquitous Technology in Education (pp. 66-62). Takamatsu, Kagawa, Japan.
Williams, T., Williams, K., Kastberg, D. & Jocelyn, L. (2005). Achievement and affect in OECD nations. Oxford Review of Education, 31(4), 517-545.
Yager, R. E. (1993). Science technology society as reform. School Science and Mathematics, 93(3), 145-151.
Zhao, C.-M., & Kuh, G. D. (2004). Adding value: Learning communities and student engagement. Research in Higher Education, 45(2), 115-138.