簡易檢索 / 詳目顯示

研究生: 楊蕓瑄
Yang, Yun-Hsuan
論文名稱: 以專利探勘與多準則決策分析方法建構未來電動車主軸技術平台
Establishing a Major Technology Platform for Future Electric Vehicles by Patent Mining and Multiple Criteria Decision Making Methods
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 140
中文關鍵詞: 專利專利檢索多準則決策分析決策實驗室分析法基於決策實驗室之網路流程法電動車平台
英文關鍵詞: Patent, Patent Mining, MCDM (Multiple Criteria Decision Making), DEMATEL (Decision Making Trial and Evaluation Laboratory), DEMATEL Based Network Process (DNP), Electric Vehicle Platform
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.052.2018.E01
論文種類: 學術論文
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二十一世紀稱為「綠色環保的時代」,為因應全球暖化問題與能源危 機,各國日漸重視低污染、低能源消耗等環保問題,節能減碳已成為目前 全球的當道議題。為了能降低傳統內燃機汽車所帶來的二氧化碳排放汙染, 各國政府逐漸轉以研發利用「電能」取代「傳統燃料」來驅動交通運輸工 具。專利是一種為推進科技進步的法律和經濟的方法,用來鼓勵人們創造 發明與促進經濟發展的保障制度。
    專利具有高度的排他性,因此可以保護發明人在法定期限內具有充分 之發明內容的有效專屬權,且這些資訊可以作為競爭性分析以及技術開發 的基礎。雖然主要的電動車廠商已經為新興技術申請專利,但後進者如何 基於專利探勘之結果,確認未來專利之趨勢,為目前最重要之趨勢,唯少 有學者探討相關議題。因此,本研究擬進行專利探勘,將專利分群為技術 群組之後,並導入 DEMATEL Based Network Process (DNP),求取群落間 之影響關係,技術群組與影響關係所成之集合,為電動車技術平台之原型, 經邀集專家進行修正式德菲法後,確認為電動車平台,分析結果可以作為 發展電動車研發策略之基礎,國內外廠商進而透過本研究之主軸技術平台 可開發未來自有品牌電動車。

    The twenty-first century has become “the century for green energy”. In order to fight global warming and energy crisis, many countries have started to underline the importance of low-pollution and low-energy consumption vehi- cles. Reducing carbon emission has become the most prominent global issue nowadays. To lower carbon emissions generated from traditional gas engines, countries from around the world are gradually developing electric energy to replace traditional energy for the use in transportation. Patent is a legal and economical tool to encourage creativity and invention. It also stimulates the economy and protect people’s asset. Patents are highly exclusive; therefore they can protect inventors of their exclusive right to the invention if they are within the valid period. This information can serve as the basis for competitive analysis and further technology development. Even though major electric vehi- cle players have already acquired most patents for newest technology, latecom- ers can still enter the industry through patent mining to stipulate platforms for electric vehicles of next generation and to amend policies for future patent managements, which is the most important trend for the industry. Thus, this re- search first categorizes patents into different technicity to compile different pa- tent compositions and then focuses on the correlation between each different patent composition through implantation of DEMATEL Based Network Pro- cess (DNP). Such compositional analysis will be identified as the prototype of the electric vehicle patent platform; the results of the analysis can be used as a basis for developing R & D strategy for electric vehicles. Domestic and foreign manufacturers can further develop the future branded electric vehicles through the spindle technology platform of this research.

    摘要 i Abstract ii Table of Contents iv List of Tables vi List of Figure vii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 4 1.3 Research Purpose 5 1.4 Research Scope and Structure 6 1.5 Research Methods 6 1.6 Research Limitations 7 1.7 Thesis Structure 8 Chapter 2 Literature Review 9 2.1 Patent Analysis 9 2.2 Technology mining 12 2.3 Product Platform Design 14 Chapter 3 Methodology 19 3.1 Patent Searching 19 3.2 ARM 26 3.3 Modified Delphi Method 31 3.4 Decision Making Trial and Evaluation Laboratory (DEMATEL) 33 3.5 DEMATEL based Network Process (DNP) Technique 37 Chapter 4 Empirical Study 43 4.1 Patent Searching 43 4.2 Data Mining 46 4.3 Technology Selection 47 4.4 Determine the relationship on Keywords by ARM 51 4.5 Exporing the electric vehicle technology by DEMATEL and DNP 60 Chapter 5 Discussion 95 5.1 Technology Patent based on USPTO Patent Searching 95 5.2 DANP technology selection 96 5.3 Future development of Electric Vehicle 97 5.4 Limitations of the study 98 Chapter 6 Conclusion 101 Reference 103 Appendix 113

    Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245-252.

    Alizon, F., Khadke, K., Thevenot, H. J., Gershenson, J. K., Marion, T. J., Shooter, S. B., & Simpson, T. W. (2007). Frameworks for product family design and de-velopment. Concurrent Engineering, 15(2), 187-199.

    Becker, S., Bryman, A., & Ferguson, H. (Eds.). (2012). Understanding research for social policy and social work: themes, methods and approaches. NewYork, USA: Policy Press.

    Basberg, B. L. (1987). Patents and the measurement of technological change: a survey of the literature. Research policy, 16(2-4), 131-141.

    Bauer, W., Elezi, F. and Maurer, M. (2013) An approach for cycle-robust platform design, ICED13, 19-22.

    Becker, H. A., & Sanders, K. (2006). Innovations in meta-analysis and social impact analysis relevant for tech mining. Technological Forecasting and Social Change, 73(8), 966-980.

    Bommer, M., & Jalajas, D. S. (2004). Innovation sources of large and small technology-based firms. IEEE Transactions on engineering management, 51(1), 13-18.

    Becker, H. A., & Sanders, K. (2006). Innovations in meta-analysis and social im-pact analysis relevant for tech mining. Technological forecasting and social change, 73(8), 966-980.

    Courseault Trumbach, C., & Payne, D. (2007). Identifying synonymous concepts in preparation for technology mining. Journal of Information Science, 33(6), 660-677.

    Choi, J., & Hwang, Y. S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change, 83, 170-182.

    Dalkey, N. C. (1972). An Impossibility Theorem for Group Probability Functions. New York,USA: Springer.

    Daim, T. U., & Oliver, T. (2008). Implementing technology roadmap process in the energy services sector: A case study of a government agency.Technological Forecasting and Social Change, 75(5), 687-720.

    Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.

    Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467.

    Dai, Z., & Scott, M. J. (2007). Product platform design through sensitivity analysis and cluster analysis. Journal of Intelligent Manufacturing, 18(1), 97-113.

    Feng, J. W., & Yu, P. (1998). Minimum spanning table and optimal expansion of competence set. Journal of Optimization Theory and Applications, 99(3), 655-679.

    Guo, Y, Zhou, X., Porter, A. L., & Robinson, D. K. (2015). Tech mining to generate indicators of future national technological competitiveness: Nano-Enhanced Drug Delivery (NEDD) in the US and China. Technological Forecasting and Social Change, 97, 168-180.

    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Strategic Management Journal, 21(2), 122-134.

    Huang, C. Y., Shyu, J. Z., & Tzeng, G. H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12),744-765.

    Huang, C. Y., & Shyu, J. Z. (2006). Developing e-commerce business models for enabling silicon intellectual property transactions. International journal of infor-mation technology and management, 5(23), 114-133.

    Huang, C. Y., Tzeng, G. H., & Ho, W. R. J. (2011). System on chip design service e-business value maximization through a novel MCDM framework. Expert Sys-tems with Applications, 38(7), 7947-7962.

    Hall, R. (1992). The strategic analysis of intangible resources. Strategic Management Journal, 13(2), 135-144.

    Hamel, G., & Prahalad, C. K. (1990). The core competence of the corporation. Harvard business review, 68(3), 79-91.

    Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier. Beijing, China: China Machine Press.

    Holmes, C., & Ferrill, M. (2005). The application of operation and technology roadmapping to aid Singaporean SMEs identify and select emerging technologies. Technological Forecasting and Social Change, 72(3), 121-137.

    Hu, Y.-C., Chen, R.-S., & Tzeng, G.-H. (2002). Generating learning sequences for decision makers through data mining and competence set expansion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 32(5), 679-686.

    Huang, Z., Lu, X., & Duan, Il. (2011). Mining association rules to support re-source allocation in business process management. Expert Systems with Applica-tions, 38(8), 9483-9490.

    Hwang, W. S., Roh, S. I., Lee, B. C., Kang, S. K., Kwon, D. K., Kim, S. & Lee, J. B. (2005). Patient-specific embryonic stem cells derived from human SCNT blas-tocysts. Science. 12(4), 113-138.

    Hsu, C. W., Chang, P. L., Hsiung, C. M., & Lin, C. Y. (2014). Commercial appli-cation scenario using patent analysis: Fermentative hydrogen production from biomass. International Journal of Hydrogen Energy, 39(33), 19277-19284.

    Hunt, D., Nguyen, L., & Rodgers, M. (Eds.). (2012). Patent searching: Tools & techniques.New York,USA: John Wiley & Sons.

    Heiko, A. (2012). Consensus measurement in Delphi studies: review and implica-tions for future quality assurance. Technological forecasting and social change, 79(8), 1525-1536.

    Hunt, D., Nguyen, L., & Rodgers, M. (Eds.). (2012). Patent searching: Tools & techniques. New York,USA: John Wiley & Sons.

    Huang, C. Y., Shyu, J. Z., & Tzeng, G. H. (2007). Reconfiguring the innovation-policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765.

    Julien, P.-A., Andriambeloson, E., & Ramangalahy, C. (2004). Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector. Entrepreneurship & Regional Development, 6(4), 251-269.

    Johannesson, H., & Claesson, A. (2005). Systematic product platform design: a combined function-means and parametric modeling approach. Journal of Engineering Design, 16(1), 25-43.

    Johnson, M. D., & Kirchain, R. E. (2011). The importance of product development cycle time and cost in the development of product families. Journal of Engineer-ing Design, 22(2), 87-112.

    Kang, I., Han, S., Lee, J., & Olfman, L. (2016). An evolutionary perspective of opportunism in high-technology alliance: the evidence from South Korean companies. Asia Pacific Business Review, 22(2), 238-261.

    Kalligeros, K. C. (2006). Platforms and real options in large-scale engineering systems. New York,USA: John Wiley & Sons.

    Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706.

    Kim, H., & Song, J. (2013). Social network analysis of patent infringement law-suits. Technological Forecasting and Social Change, 80(5), 944-955.

    Liu, C. H., Tzeng, G. H., & Lee, M. H. (2012). Improving tourism policy imple-mentation–The use of hybrid MCDM models. Tourism Management, 33(2), 413-426.

    Lee, S., Lee, S., Seol, H., & Park, Y. (2008). Using patent information for designing new product and technology: keyword based technology roadmapping. R&d Management, 38(2), 169-188.

    Lee, S., & Park, Y. (2005). Customization of technology roadmaps according to roadmapping purposes: Overall process and detailed modules. Technological Forecasting and Social Change, 72(5), 567-583

    Lee, J. H., Lee, E. K., Joo, W. J., Jang, Y., Kim, B. S., Lim, J. Y., ... & Yang, C. W. (2014). Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science, 344(6181), 286-289.

    Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A. Y., ... & Oh, S.
    (2013). Functional roles of enhancer RNAs for oestrogen-dependent transcrip-tional activation. Nature, 498(7455), 516.

    Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.

    Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms. New York, USA: Simon and Schuster.

    Martin, M. V., & Ishii, K. (2002). Design for variety: developing standardized and modularized product platform architectures. Research in engineering design, 13(4), 213-235.

    Moon, S. K., & McAdams, D. A. (2012). A market-based design strategy for a universal product family. Journal of Mechanical Design, 134(11), 111007.

    Nelson, S. A., Parkinson, M. B., & Papalambros, P. Y. (2001). Multicriteria opti-mization in product platform design. Journal of Mechanical Design, 123(2), 199-204.

    Ormston, R., Spencer, L., Barnard, M., & Snape, D. (2014). The foundations of qualitative research. Qualitative research practice: A guide for social science stu-dents and researchers, 2, 52-55.

    Park, Y., Yoon, B., & Lee, S. (2005). The idiosyncrasy and dynamism of techno-logical innovation across industries: patent citation analysis. Technology in Socie-ty, 27(4), 471-485.

    Pirmoradi, Z., Wang, G. G., & Simpson, T. W. (2014). A review of recent litera-ture in product family design and platform-based product development. In Advances in product family and product platform design. New York, USA: Springer

    Porter, A. L., & Cunningham, S. W. (2004). Tech mining: exploiting new tech-nologies for competitive advantage. New York, USA: John Wiley & Sons.

    Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decom-positions. New York, USA: Springer

    Phillips-Wren, G. (Ed.). (2010). Advances in Intelligent Decision Technologies: Proceedings of the Second KES International Symposium. New York, USA:Springer Science & Business Media.

    Rojas Arciniegas, A. J., & Kim, H. M. (2012). Incorporating security considera-tions into optimal product architecture and component sharing decision in product family design. Engineering Optimization, 44(1), 55-74.

    Robinson, D. K., Huang, L., Guo, Y., & Porter, A. L. (2013). Forecasting Innova-tion Pathways (FIP) for new and emerging science and technolo-gies. Technological Forecasting and Social Change, 80(2), 267-285.

    Robertson, D., & Ulrich, K. (1998). Planning for product platforms. Sloan man-agement review, 39(4), 19.

    Satish, T., Kai, Y., Annu, T., and Anoop, V. (2012). A fuzzy goal programming approach for optimal product family design of mobile phones and multi-ple-platform architecture, IEEE Transactions on Systems, Man, and Cybernetics, 42(6), 1519-1530.

    Seung Ki Moon, Kyoung Jong Park, and Timothy, W. S. (2013). Platform design variable identification for a product family using multi-objective particle swarm optimization, Research in Engineering and Design, 25(2), 95-108.

    Saaty, T. L. (1990). How to make a decision: the analytic hierarchy pro-cess. European journal of operational research, 48(1), 9-26.

    Shehabuddeen, N., Probert, D., & Phaal, R. (2006). From theory to practice: chal lenges in operationalising a technology selection framework. Technovation, 26(3), 324-335.

    Shen, Y. C., Lin, G. T., & Tzeng, G. H. (2011). Combined DEMATEL techniques with novel MCDM for the organic light emitting diode technology selec-tion. Expert Systems with Applications, 38(3), 1468-1481.

    Simpson, T. W., Maier, J. R., & Mistree, F. (2001). Product platform design: method and application. Research in engineering Design, 13(1), 2-22.

    Simpson, T. W., Jiao, J., Siddique, Z., & Hölttä-Otto, K. (2014). Advances in product family and product platform design. New York,USA: Springer.

    Timothy W. Simpson, Laura A. Slingerland, Drew Logan. (2012). From user re-quirements to commonality specifications: an integrated approach to product fam-ily design, Res Eng Design, 23(2), 141-153

    Tzeng, G. H., Chiang, C. H., & Li, C. W. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert systems with Applications, 32(4), 1028-1044.

    Tamura, M., Nagata, H., & Akazawa, K. (2002). Extraction and systems analysis of factors that prevent safety and security by structural models. In SICE 2002. Proceedings of the 41st SICE Annual Conference (Vol. 3, pp. 1752-1759). IEEE.

    Tzeng, G. H., & Huang, C. Y. (2012). Combined DEMATEL technique with hy-brid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190.

    Zhila, P., Gary Wang, and Timothy, W. S. (2014). A review of recent literature in product family design and platform-based product development, Advances in Product Family and Product Platform Design, 22(1), 1-46.

    Zha, X. F., & Sriram, R. D. (2006). Platform-based product design and develop-ment: A knowledge-intensive support approach. Knowledge-Based Systems, 19(7), 524-543.

    Zacharias, N. A., & Yassine, A. A. (2008). Optimal platform investment for product family design. Journal of Intelligent Manufacturing, 19(2), 131-148.

    無法下載圖示 本全文未授權公開
    QR CODE