簡易檢索 / 詳目顯示

研究生: 楊禮瑋
Yang, Li-Wei
論文名稱: 以專利佈局與基於量子基因演算法之能力集合擴展定義醫療器材之研發策略—以超音波為例
Defining R&D Strategies for Medical Devices by Using the Patent Landscaping and the Quantum Genetic Algorithm Based Competence Set Expansions
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 曾國雄
Tzeng, Gwo-Hshiung
羅乃維
Lo, Nai-Wei
黃啟祐
Huang, Chi-Yo
口試日期: 2020/08/09
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 專利檢索專利地圖模糊能力集合擴展決策實驗室分析法量子基因演算法超音波探頭
英文關鍵詞: Patent Mining, Patent Map, Fuzzy Competence Set Expansion Method, Quantum Genetic Algorithm, Ultrasound Probe
研究方法: 調查研究德爾菲法
DOI URL: http://doi.org/10.6345/NTNU202101438
論文種類: 學術論文
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii Table of Contents iv Chapter 1 Introduction 1 1.1Research Backgrounds  1 1.2 Research Motivation and Purpose 5 1.3 Research Limitation 7 1.4 Research Scope and Framework 9 1.5 Thesis Structure 10 Chapter 2 Literature Review 11 2.1 Data Mining 11 2.2 Patent Mining 14 2.3 Patent Mapping 19 Chapter 3 Methodology 23 3.1 Patents Searching 24 3.2 Patent Map 30 3.3 Modified Delphi Method 33 3.4 Fuzzy Competence Set Expansion 34 3.5 D-DANP-mV 41 3.6 Quantum Genetic Algorithm 44 Chapter 4 Empirical Study 47 4.1 Background of Technology Industry 47 4.2 Brain Storming by Expert's Opinions 48 4.3 Patent Searching 48 4.4 Building the Patent Map 51 4.5 Technology Selection 53 4.6 The Relationship of Each Expending Technologies 59 4.7 The Relationship of Each Competence Set Expansion 62 4.8 The Roadmap of Each Expending Technologies 67 Chapter 5 Discussion and Conclusions 71 5.1 Implications and Contribution 72 5.2 Limitation 74 5.3 Suggestion for Further Research 74 Chapter 6 Conclusion 77 References 81

    Abelquist, E. W. (2019). To Mitigate the LNT Model’s Unintended Consequences—A Proposed Stopping Point for as Low as Reasonably Achievable. Health Physics, 117(6), 592-597.
    Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of modern transportation, 24(4), 284-303.
    BEA, U. S. (2019). Health Expenditures per Capita [Online forum comment]. Retrieved from https://fred.stlouisfed.org/series/HLTHSCPCHCSA
    Beall, J. (2008). The weaknesses of full-text searching. The Journal of Academic Librarianship, 34(5), 438-444.
    Behera, B. K., & Panigrahi, P. K. (2020). A simulational model for witnessing quantum effects of gravity using IBM quantum computer. Quantum Information Processing, 19(4), 1-12.
    Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of statistical physics, 22(5), 563-591.
    Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research policy, 37(3), 407-429.
    Bonino, D., Ciaramella, A., & Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1), 30-38.
    Carlsson, C., & Korhonen, P. (1986). A parametric approach to fuzzy linear programming. Fuzzy sets and systems, 20(1), 17-30.
    Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., . . . Wang, W. (2006). Data mining curriculum: A proposal (Version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee, 140, 1-10.
    Chao, Y.-K., Liu, K.-S., Wang, Y.-C., Huang, Y.-L., & Liu, S.-J. (2013). Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest, 144(1), 193-199.
    Chen, J., Li, D., & Min, H. (2015). High-Performance Embedded Synthetic Aperture Medical Ultrasound Imaging System. In X. Zhang, Z. Wu, & X. Sha (Eds.), Embedded System Technology (Vol. 572, pp. 13-22). Beijing, China: Springer
    Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artif Intell Med, 26(1-2), 1-24. doi:10.1016/s0933-3657(02)00049-0
    Coccia, M. (2018). The Fishbone diagram to identify, systematize and analyze the sources of general purpose Technologies. Journal of Social and Administrative Sciences, 4(4), 291-303.
    Cummins, M. R. (2019). Nonhypothesis-driven research: data mining and knowledge discovery. In A. J. Richesson R. (Ed.), Clinical Research Informatics (2 ed., pp. 341-356). New York, NY: Springer, Cham.
    Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4151-4166.
    Deng, W., Xu, J., Zhao, H., & Song, Y. (2020). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 1-9. doi:10.1109/TITS.2020.3025796.
    Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97-117.
    Duan, H.-b., Xu, C.-f., & Xing, Z.-H. (2010). A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems. International Journal of Neural Systems, 20(01), 39-50.
    Díaz-Jimenez, J. P., & Rodriguez, A. N. (2013). Interventions in Pulmonary Medicine (1 ed.). New York, NY: Springer.
    FDA, U. S. (2019). Initiative to reduce unnecessary radiation exposure from medical imaging [Online forum comment]. Retrieved from https://www.fda.gov/radiation-emitting-products/initiative-reduce-unnecessary-radiation-exposure-medical-imaging/white-paper-initiative-reduce-unnecessary-radiation-exposure-medical-imaging
    Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. New York, NY: Cambridge university press.
    Frietsch, R., & Schmoch, U. (2010). Transnational patents and international markets. Scientometrics, 82(1), 185-200.
    Gangopadhyay, S., Behera, B. K., & Panigrahi, P. K. (2018). Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Information Processing, 17(7), 1-8.
    Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., . . . Vercauteren, T. (2018). NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed, 158, 113-122. doi:10.1016/j.cmpb.2018.01.025
    Gore, J. C. (2020). Artificial intelligence in medical imaging. Magnetic Resonance Imaging, 68, 1-4. doi:10.1016/j.mri.2019.12.006.
    Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques. Morgan Kaufinann, 10, 559-569.
    Hand, D. J. (2007). Principles of data mining. Drug Safety, 30(7), 621-622.
    Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research policy, 36(3), 387-398.
    Holmes, N. G., Day, J., Park, A. H., Bonn, D., & Roll, I. (2014). Making the failure more productive: scaffolding the invention process to improve inquiry behaviors and outcomes in invention activities. Instructional Science, 42(4), 523-538.
    Holzinger, A., & Jurisica, I. (2014). Knowledge Discovery and Data Mining in Biomedical Informatics: The Future Is in Integrative, Interactive Machine Learning Solutions. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics (1 ed., pp. 1-18). New York, NY: Springer, Berlin, Heidelberg.
    Hormozi, A. M., & Giles, S. (2004). Data mining: A competitive weapon for banking and retail industries. Information systems management, 21(2), 62-71.
    Hsu, Y.-L., Lee, C.-H., & Kreng, V. B. (2010). The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications, 37(1), 419-425.
    Hu, J., Li, S., Yao, Y., Yu, L., Yang, G., & Hu, J. (2018). Patent keyword extraction algorithm based on distributed representation for patent classification. Entropy, 20(2), 104.
    Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2006). Optimal fuzzy multi-criteria expansion of competence sets using multi-objectives evolutionary algorithms. Expert Systems with Applications, 30(4), 739-745.
    Hwang, B.-N., Huang, C.-Y., & Wu, C.-H. (2016). A TOE approach to establish a green supply chain adoption decision model in the semiconductor industry. Sustainability, 8(2), 168.
    Hwang, B.-N., Huang, C.-Y., & Yang, C.-L. (2016). Determinants and their causal relationships affecting the adoption of cloud computing in science and technology institutions. Innovation, 18(2), 164-190.
    Jafari, S. H., Saadatpour, Z., Salmaninejad, A., Momeni, F., Mokhtari, M., Nahand, J. S., . . . Kianmehr, M. (2018). Breast cancer diagnosis: Imaging techniques and biochemical markers. Journal of cellular physiology, 233(7), 5200-5213.
    Johansson, N., & Larsson, J.-Å. (2017). Efficient classical simulation of the Deutsch–Jozsa and Simon’s algorithms. Quantum Information Processing, 16(9), 1-14.
    Järvenpää, H. M., Mäkinen, S. J., & Seppänen, M. (2011). Patent and publishing activity sequence over a technology's life cycle. Technological Forecasting and Social Change, 78(2), 283-293.
    Kim, J., & Lee, S. (2015). Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change, 92, 332-345.
    Lee, J.-C., Lin, W.-M., Liao, G.-C., & Tsao, T.-P. (2011). Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system. International Journal of Electrical Power & Energy Systems, 33(2), 189-197.
    Lee, S. (2013). Linking Technology Roadmapping to Patent Analysis. In Technology Roadmapping for Strategy and Innovation (pp. 267-284). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6-7), 481-497.
    Liebgott, H., Rodriguez-Molares, A., Cervenansky, F., Jensen, J. A., & Bernard, O. (2016). Plane-wave imaging challenge in medical ultrasound. Paper presented at the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France.
    Liou, J.-C., Lin, W.-C., Kong, Y.-Y., Song, Y.-C., & Fang, K.-W. (2017). Medical ultrasound system with an application-specific integrated circuit (ASIC). Paper presented at the 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taiwan.
    Liu, C.-H., Tzeng, G.-H., & Lee, M.-H. (2012). Improving tourism policy implementation–The use of hybrid MCDM models. Tourism Management, 33(2), 413-426.
    Luo, Liu, Zhang, & Wang. (2020). Yao. jl: Extensible, efficient framework for quantum algorithm design. Quantum, 4, 341.
    Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48.
    Montaldo, G., Tanter, M., Bercoff, J., Benech, N., & Fink, M. (2009). Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(3), 489-506.
    Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., & Farouk, A. (2018). New method of calculating a multiplication by using the generalized Bernstein-Vazirani algorithm. International journal of theoretical physics, 57(6), 1605-1611.
    Opricovic, S., & Tzeng, G.-H. (2003). Fuzzy multicriteria model for postearthquake land-use planning. Natural hazards review, 4(2), 59-64.
    Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.
    Perdrix, S. (2007). Towards minimal resources of measurement-based quantum computation. New Journal of Physics, 9(6), 206.
    Pereira, W. C. d. A., Machado, C. B., Negreira, C. A., & Canetti, R. (2008). Ultrasonic Techniques for Medical Imaging and Tissue Characterization. In A. A. Vives (Ed.), Piezoelectric Transducers and Applications (pp. 433-465). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Room, C. (2021). Quantum Computing. algorithms, 12(55), 33.
    Sandrin, L., Tanter, M., Gennisson, J. L., Catheline, S., & Fink, M. (2002). Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control, 49(4), 436-446. doi:10.1109/58.996561
    Shekarian, E., Abdul-Rashid, S. H., & Olugu, E. U. (2017). An Integrated Fuzzy VIKOR Method for Performance Management in Healthcare. In Organizational Productivity and Performance Measurements Using Predictive Modeling and Analytics (pp. 40-61). Pennsylvania, PA: IGI Global.
    Shemshadi, A., Shirazi, H., Toreihi, M., & Tarokh, M. J. (2011). A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Systems with Applications, 38(10), 12160-12167.
    Shi, Y., Wang, S., Peng, Y., Li, J., & Zeng, Y. (2009). Cutting-Edge Research Topics on Multiple Criteria Decision Making: 20th International Conference, MCDM 2009, Chengdu/Jiuzhaigou, China, June 21-26, 2009. Proceedings (Vol. 35). New York, NY: Springer Science & Business Media.
    Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and computer modelling, 45(7-8), 801-813.
    Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2), 303-332.
    Stembridge, B., & Corish, B. (2004). Patent data mining and effective patent portfolio management. Intellectual Asset Management, 10(11), 30-35.
    Tanter, M., & Fink, M. (2014). Ultrafast imaging in biomedical ultrasound. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 61(1), 102-119. doi:10.1109/TUFFC.2014.6689779.
    Tsai, H.-Y., Chang, C.-W., & Lin, H.-L. (2010). Fuzzy hierarchy sensitive with Delphi method to evaluate hospital organization performance. Expert Systems with Applications, 37(8), 5533-5541.
    Tzeng, G.-H., & Huang, J.-J. (2013). Fuzzy Multiple Objective Decision Making. Florida, FL: Taylor & Francis.
    Wong, K. C. (2011). Using an Ishikawa diagram as a tool to assist memory and retrieval of relevant medical cases from the medical literature. Journal of Medical Case Reports, 5, 120-123.
    Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
    Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.-F., & Hua, L. (2012). Data mining in healthcare and biomedicine: a survey of the literature. Journal of medical systems, 36(4), 2431-2448.
    Youngrak, C. (2003). Technology roadmap in Korea. Paper presented at the Tokyo: The Second International Conference on Technology Foresight.
    Yu, X., & Zhang, B. (2019). Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technological Forecasting and Social Change, 145, 273-283.
    Yuzhou, L., Zhaoyan, H., & Kaijun, Y. (2018). The Impact of the R&D Expenditure and Patent Rights towards Operating Performance in Medical Device Industry–An Empirical Study. Revista de Cercetare si Interventie Sociala, 61, 187-197.
    Zaki, M. J., Meira Jr, W., & Meira, W. (2014). Data mining and analysis: fundamental concepts and algorithms. New York, NY: Cambridge University Press.
    Zhang, W., & Deng, Y. (2019). Combining conflicting evidence using the DEMATEL method. Soft computing, 23(17), 8207-8216.

    無法下載圖示 本全文未授權公開
    QR CODE