簡易檢索 / 詳目顯示

研究生: 林俞君
論文名稱: 含十六族元素 (硫、硒、碲) 之過度金屬 (鉻、錳、釕) 團簇化合物的合成、轉換關係、化性與物性研究
指導教授: 謝明惠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 204
中文關鍵詞: 十六族元素混合金屬羰基金屬團簇物
英文關鍵詞: Chalcogenide, Mixed-metal, Carbonyl, Metal Clusters
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Te−Mn−CO 系統
    將 Te powder、Mn2(CO)10 與四級銨鹽 (Et4NBr 或 TMBACl) 以適當比例於 1 M 和 2 M KOH 之 MeOH/MeCN 混合溶劑加熱迴流,可分別得似啞鈴形 (dumbbell-like) 之順磁性 (S = 1) 化合物 [Te10Mn6(CO)18]4− (1) 與以 Te2Mn3 為主體且於 Mn−Mn 邊橋接氫配子 (hydride) 之四角錐 [HTe2Mn3(CO)9]2− (2);當相似反應於 2 M/MeOH 溶劑並降溫至 40 oC 下進行時,則得以 μ4-Te 橋接兩 Mn2(CO)8 片段之螺環狀 (spiro) 化合物 [TeMn4(CO)16]2− (3)。再者,將 KOH 濃度提高至 4 M 於 MeOH/MeCN 混合溶劑下反應可得一具順磁性 (S = 1) 之化合物 [Te6Mn6(CO)18]4− (4),其結構為兩個 Te2Mn3(CO)9 以 μ4-η1,η1,η1,η1-Te22− 片段連接形成。此外,化合物 2 可與 HCl 反應產生雙三角錐之 [Te2Mn3(CO)9]– (5) 與 H2。再者,化合物 2、3 及 4 皆可藉由加入 Te powder 於高溫下反應擴核形成化合物 1;而化合物 1 亦可與過量 Mn2(CO)10 逆反應形成 4。另一方面,將化合物 2 與親核試劑 CO 反應可得一 CO 加成之Intermediate I,進一步將其與 O2 反應則生成一結構新穎之共邊雙聚物 [(HMn3(CO)10(μ3-Te))2(μ6-Te2)]2− (6)。最後,藉由電化學、液態及固態紫外可見光光譜 (UV-Vis) 探究此系列化合物核數與化合物價數之效應,同時搭配理論計算佐證。 
    S−Ru−CO 與 E−Cr−Ru−CO (E = S, Se) 系統
    將 Na2S‧9H2O 與 Ru3(CO)12 以莫耳比 1: 1 或 1: 1.8 於 MeOH 溶液下加熱迴流,可分別得四面體構型之 [SRu3(CO)9]2− (1) 與八面體構型之 [SRu5(CO)14]2− (2)。當團簇物 1 於 MeCN 中加熱迴流反應,可形成 S 原子蓋接於 Ru4 環兩側之八面體團簇物 [S2Ru4(CO)10]2− (3)。而化合物 ¬3 與一當量 Ru3(CO)12 反應則可進行頂點取代轉換為化合物 2。進一步將化合物 1、2 和 3 與 MeOH 或 HCl 進行質子化反應可依序形成具氫配子之團簇物 [HSRu3(CO)9]− (4)、[HS2Ru4(CO)10]− (5) 與 [HSRu5(CO)14]− (6);反之,化合物 4、5 或 6 於鹼性條件下可逆反應分別形成化合物 1、2 或 3。另一方面,與化合物 3 等電子數之混合鉻與釕八面體團簇物 [H2E2CrRu3(CO)10]2− (E = S, 7; Se, 8) 可由一鍋化方式將 E powder (E = S, Se)、Cr(CO)6 及 Ru3(CO)12 於鹼性 MeOH 溶劑下加熱迴流製備。由 X-ray 結構解析可知 7 與 8 以 E2CrRu3 八面體為主體且於 Ru−Ru 邊上各橋接一個氫配子 (hydride)。此外含鉻與釕金屬之化合物 7 與 8 可與 HCl 產生 H2,顯示混合鉻釕金屬團簇物之氫配子性質較偏鹼性 (hydridic)。最後,藉由電化學探究團簇物核數、團簇物價數與混合異核金屬之效應;並搭配理論計算進行系統化的探討。

    Te−Mn−CO system
    The reactions of Te powder, Mn2(CO)10, and quaternary ammonium salts (Et4NBr or TMBACl) in appropriate ratios in refluxing 1 M or 2 M KOH/MeOH/MeCN solutions led to the formation of the dumbbell-like paramagnetic complex [Te10Mn6(CO)18]4− (1) with S = 1 or the square-pyramidal hydride cluster [HTe2Mn3(CO)9]2− (2). Similar reaction conducted in 2 M KOH/MeOH solutions at 40 oC produced a spiro cluster [TeMn4(CO)16]2− (3) with a μ4-Te atom bridging two Mn2(CO)8 moieties. Moreover, if the reaction was proceeded in 4 M KOH/MeOH/MeCN solutions, a novel paramagnetic complex [Te6Mn6(CO)18]4− (4) with S = 1 was yielded, which possessed two Te2Mn3(CO)9 units connected by a μ4-η1,η1,η1,η1 Te22− ligand. In addition, cluster 2 could react with HCl to yield the trigonal-bipyramidal cluster [Te2Mn3(CO)9]− (5) and H2. Besides, clusters 2, 3, and 4 were found to undergo cluster expansion to form 1 upon the treatment of Te powder at elevated temperatures, and cluster 1 could be reconverted into 4 via the addition of excess Mn2(CO)10. On the other hand, cluster 2 readily reacted with CO to give a carbonylated intermediate I, which could be further treated with O2 to produce a hexamanganese cluster [(HMn3(CO)10(3-Te))2(6-Te2)]2− (6). Furthermore, the nature, cluster transformation, electrochemistry, and UV/vis absorption of these Te–Mn–CO clusters were elucidated by DFT calculations in terms of the size and the charge of the clusters.

    S−Ru−CO and E−Cr−Ru−CO (E = S, Se) system
    The reactions of Na2S‧9H2O and Ru3(CO)12 in a molar ratio of 1: 1 or 1: 1.8 in refluxing MeOH solutions led to the formation of the tetrahedral cluster [SRu3(CO)9]2− (1) and the octahedral cluster [SRu5(CO)14]2− (2), respectively. When cluster 1 was further refluxed in MeCN solutions, the octahedral cluster [S2Ru4(CO)10]2− (3) was produced, with the S atoms occupying the apical positions. In addition, cluster 3 could react with Ru3(CO)12 to yield cluster 2. Besides, clusters 1, 2, and 3 could be protonated by MeOH or HCl to give a series of S−Ru−CO hydride clusters, namely, [HSRu3(CO)9]– (4), [HS2Ru4(CO)10]− (5), and [HSRu5(CO)14]− (6). Conversely, clusters 4, 5, or 6 could be reconverted into 1, 2, or 3 under basic conditions. On the other hand, the mixed Cr−Ru carbonyl clusters [H2E2CrRu3(CO)10]2− (E = S, 7; Se, 8), which were isoelectronic to 3, could be synthesized from the one-pot reactions of E powder (E = S, Se), Cr(CO)6, and Ru3(CO)12 in KOH/MeOH solutions. The X-ray analysis showed that 7 and 8 consisted of an octahedral E2CrRu3 core with two hydride ligands bridging on each Ru–Ru bond. Interestingly, clusters 7 and 8 could further react with HCl to yield H2, indicating the hydridic character of the hydrogen atoms, which was attributed to the incorporation of Cr metal. Furthermore, the nature, cluster transformation, and electrochemistry of these S−Ru−CO and E–Cr−Ru−CO clusters were also elucidated by DFT calculations.

    中文摘要 I 英文摘要 III 第一章 1 1.1 摘要 1 1.2 前言 3 1.3 實驗目標 5 1.4 結果與討論 6 1.4-1 化合物 [Et4N]4[1] 之合成 6 1.4-2 化合物 [Et4N]2[2] 之合成 7 1.4-3 化合物 [TMBA]2[3] 之合成 7 1.4-4 化合物 [Et4N]4[4] 之合成 8 1.4-5 探討化合物 2 之氫配子 (hydride) 之性質 8 1.4-6 化合物 1−4 之間的結構轉換關係 9 1.4-7 化合物 2 與 CO 之反應 11 1.4-8 化合物 1、2、3、4、6 之 X-ray 結構比較 14 1.4-9 化合物 1、2 與 4 之磁性分析 19 1.4-10 電化學分析探討 21 1.4-11 液態電子吸收光譜探討 25 1.4-12 固態電子吸收光譜探討 26 1.5 結論 29 1.6 實驗部份 30 1.6-1 [Et4N]4[Te10Mn6(CO)18] ([Et4N]4[1]) 之合成 31 1.6-2 [PPN]2[HTe2Mn3(CO)9] ([PPN]2[2]) 之合成 31 1.6-3 [TMBA]2[TeMn4(CO)16] ([TMBA]2[3]) 之合成 33 1.6-4 [Et4N]4[Te6Mn6(CO)18] ([Et4N]4[4]) 之合成 34 1.6-5 [Et4N]2[2] 與 HCl 之反應 ([Et4N]2[2] 轉換至 [Et4N][Te2Mn3(CO)9] ([Et4N][5])) 35 1.6-6 [PPN]2[2] 與 HCl 於 CD3CN 之反應 36 1.6-7 [Et4N]2[2] 轉換至 [Et4N]4[1] 36 1.6-8 [Et4N]2[2] 與 4 當量 Te powder 於 J-Young Tube 之實驗 36 1.6-9 [Et4N]2[3] 轉換至 [Et4N]4[1] 37 1.6-10 [Et4N]4[4] 轉換至 [Et4N]4[1] 37 1.6-11 [Et4N]4[1] 轉換至 [Et4N]4[4] 38 1.6-12 [PPN]2[2] 與 CO 和 O2 之反應 ([PPN]2[H2Te4Mn6(CO)20] ([PPN]2[6]) 之合成) 38 1.6-13 化合物 [Et4N]4[1]、[PPN]2[2]‧CH2Cl2、[TMBA]2[3]、[Et4N]4[4]‧2MeCN、[PPN]2[6] 與 [TMBA]2[7] 之 X-ray 結構解析 39 1.6-14 電化學分析 40 1.6-15 電子吸收光譜 41 1.6-16 理論計算 41 1.7 磁性分析 43 1.7-1 [Et4N]4[Te10Mn6(CO)18] ([Et4N]4[1]) 的磁性分析 46 1.7-2 [PPN]2[HTe2Mn3(CO)9] ([PPN]2[2]) 的磁性分析 47 1.7-3 [Et4N]4[Te6Mn6(CO)18] ([Et4N]4[4]) 的磁性分析 48 1.8 氫氣的定量分析 49 1.8-1 檢量線製作 49 1.8-2 [PPN]2[2] 與 HCl 反應之氫氣定量 50 1.9 參考文獻 51 第二章 102 2.1 摘要 102 2.2 前言 104 2.3 實驗目標 106 2.4 結果與討論 107 2.4-1 Na2S‧9H2O 與 Ru3(CO)12 之一鍋化反應 107 2.4-2 化合物 1、2 與 [S2Ru4(CO)10]2− (3) 之轉換關係 108 2.4-3 化合物 1、2 與 3 之質子化反應 (轉換至 4、5 與 6) 109 2.4-4 化合物 4−6 之去質子化反應 110 2.4-5 化合物 [H2E2CrRu3(CO)10]2− (E = S, 7; Se, 8) 之合成 110 2.4-6 化合物 4−8 之氫配子性質探討 112 2.4-7 化合物 1−8 與相關之 X-ray 結構比較 113 2.4-8 電化學分析探討 116 2.4-9 電子吸收光譜探討 120 2.5 結論 123 2.6 實驗部分 124 2.6-1 [PPh4]2[SRu3(CO)9] ([PPh4]2[1]) 之合成 125 2.6-2 [PPh4]2[SRu5(CO)14] ([PPh4]2[2]) 之合成 125 2.6-3 [PPh4]2[S2Ru4(CO)10] ([PPh4]2[3]) 之合成 ([PPh4]2[1] 轉換至 [PPh4]2[3]) 127 2.6-4 [PPh4]2[3] 轉換至 [PPh4]2[2] 127 2.6-5 [PPh4][HSRu3(CO)9] ([PPh4][4]) 之合成 128 2.6-6 [PPh4][HS2Ru4(CO)10] ([PPh4][5]) 之合成 ([PPh4]2[3] 轉換至 [PPh4][5]) 129 2.6-7 [PPh4][HSRu5(CO)14] ([PPh4][6]) 之合成 ([PPh4]2[2] 轉換至 [PPh4][6]) 129 2.6-8 [PPh4][4] 轉換至 [PPh4]2[1] 130 2.6-9 [PPh4][5] 轉換至 [PPh4]2[3] 130 2.6-10 [PPh4][6] 轉換至 [PPh4]2[2] 131 2.6-11 [PPN]2[H2S2CrRu3(CO)10] ([PPN]2[7]) 之合成 131 2.6-12 [PPN]2[H2Se2CrRu3(CO)10] ([PPN]2[8]) 之合成 132 2.6-13 [PPN]2[7] 與 HCl 於 CD3CN 之反應 133 2.6-14 [PPN]2[8] 與 HCl 於 CD3CN 之反應 133 2.6-15 [PPN]2[1]‧CH2Cl2、[Et4N]2[3]、[Et4N][4]、[PPN][6]、[PPN]2[7] 與 [PPN]2[8] 之 X-ray 結構解析 134 2.6-16 電化學分析 135 2.6-17 電子吸收光譜 136 2.6-18 理論計算 137 2.7 氫氣的定量分析 138 2.7-1 檢量線製作 138 2.7-2 [Et4N][4] 與 LiAlH4 反應之氫氣定量 139 2.7-3 [PPN]2[7] 與 HCl 反應之氫氣定量 140 2.7-4 [PPN]2[8] 與 HCl 反應之氫氣定量 140 2.8 參考文獻 142 附錄 198 A.1 實驗部分 198 A.1-1 [PPN]2[{Se2Ru3(CO)7}2Cu] 之合成 198 A.1-2 [PPN]2[{Se2Ru3(CO)7}2Cu] 之 X-ray 結構解析 199 A.2 參考文獻 200

    1. Kostakis, G. E.; Akoab, A. M.; Powell, A. K. Chem. Soc. Rev. 2010, 39, 2238−2271. (b) Aromí, G.; Aubin, S. M. J.; Bolcar, M. A.; Christou, G.; Eppley, H. J.; Folting, K.; Hendrickson, D. N.; Huffman, J. C.; Squire, R. C.; Tsai, H.-L.; Wang, S.; Wemple, M. W. Polyhedron 1998, 17, 3005−3020.
    2. Zhang L.; Onet C. I.; Clérac R.; Rouzières M.; Marzec B.; Boese M.; Venkatesan M.; Schmitt W. Chem. Commun. 2013, 49, 7400−7402.
    3. (a) Stamatatos, Th. C.; Christou, G. Inorg. Chem. 2009, 48, 3308−3322. (b) Caneschi, A.; Gatteschi, D.; Sessoli, R. J. Chem. Soc. Dalton Trans. 1997, 3963–3970. (c) Bagai, R.; Christou, G. Chem. Soc. Rev. 2009, 38, 1011−1026.
    4. Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L. Chem. Rev. 2004, 104, 903−938.
    5. (a) Chen, H.; Faller, J. W.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2004, 126, 7345−7349. (b) Tsui, E. Y.; Kanady, J. S.; Agapie, T. Inorg. Chem. 2013, 52, 13833−13848. (c) Roubeau, O.; Clérac, R. Eur. J. Inorg. Chem. 2008, 4325−4342.
    6. (a) Knickelbein, M. B. Phys. Rev. B 2004, 70, 014424−014424-8. (b) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Ziolo, R. Phys. Rev. Lett. 1996, 76, 3830−3833.
    7. (a) Goswami A.; Mandale A. B. Jpn. J. Appl. Phys. 1978, 17, 473−478. (b) Sharma, R. K.; Rastogi, A. C.; Singh, G. Mater. Chem. Phys. 2004, 84, 46−51.
    8. Adams, R. D.; Miao, S.; Smith, M. D.; Farach, H.; Webster, C. E.; Manson, J.; Hall, M. B. Inorg. Chem. 2004, 43, 2515−2525.
    9. Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183−190.
    10. Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1854–1856.
    11. Huttner, G.; Schuler, S.; Zsolnai, L.; Gottlieb, M.; Braunwarth, H.; Minelli, M. J. Organomet. Chem. 1986, 299, C4−C6.
    12. Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem.—Eur. J. 2001 , 7, 3152–3158.
    13. Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295−3299.
    14. 謝明惠,黃宗毅,未發表之結果。
    15. (a) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, H.-W. J. Am. Chem. Soc. 2010, 131, 4032–4033. (b) Ho, C.-H.; Chu, Y.-Y.; Lin, C.-N.; Chen, H.-W.; Huang, C.-Y.; Shieh, M. Organometallics 2010, 29, 4396–4405.
    16. (a) Ma, Y. Q.; Yu, L.; Hu, C. S.; Chen, X.; Li, J.; Wang, H. G.; Miguel, D. J. Mol. Struct. 2003, 650, 45–48. (b) Shieh, M.; Miu, C.-Y.; Huang, K.-C.; Lee C.-F.; Chen, B.-G. Inorg. Chem. 2011, 50, 7735–7748.(c) Alvarez, B.; García-Granda, S.; Jeannin, Y.; Miguel, D.; Miguel, J. A.; Riera, V. Organometallics 1991, 10, 3005–3007.
    17. (a) Lesch, D. A.; Rauchfuss, T. B. Organometallics 1982, 1, 499–506. (b) Roof, L. C.; Smith, D. M.; Drake, G. W.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 337–345. (c) Shieh, M.; Tang, T.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2797–2803. (d) Shieh, M.; Yu, C.-H.; Chu, Y.-Y.; Guo, Y.-W.; Huang, C.-Y.; Hsing, K.-J.; Chen, P.-C.; Lee, C.-F. Chem. Asian J. 2013, 8, 963–973.
    18. 謝明惠,劉郁欣,未發表之結果。
    19. 洪昭宇,國立臺灣師範大學碩士論文,1998。
    20. 謝明惠,傅怡瑄,未發表之結果。
    21. 黃國智,國立臺灣師範大學博士論文,1998。
    22. 李旻憲,國立臺灣師範大學碩士論文,2010。
    23. (a) Huang, S.-P.; Kantzidis, M. G. J. Am. Chem. Soc. 1992, 114, 5477–5478. (b) Roof, L. C.; Pennington, W. T.; Kolis, J. W. J. Am. Chem. Soc. 1990, 112, 8172–8174. (c) Das, B.K.; Kanatzidis, M.G.; Polyhedron 2000, 19, 1995–2002.
    24. Wolf S.; Feldmann, C. Z. Anorg. Allg. Chem. 2012, 638, 1787–1791.
    25. Steigerwald, M. L.; Rice, C. E. J. Am. Chem. Soc. 1988, 110, 4228−4231.
    26. Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. 1999, 38, 1252–1254.
    27. Riccò, M.; Shiroka, T.; Carretta, S.; Bolzoni, F.; Femoni, C.; Iapalucci, M. C.; Longoni, G. Chem.–Eur. J. 2005, 11, 2856–2861.
    28. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    29. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
    30. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    31. (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    32. (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    34. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.
    35. Wiberg, K. B. Tetrahedron 1968, 24, 1083−1096.
    36. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735−746.
    37. (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899−926.
    38. Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
    1. Bailey, P. J.; Charalambous, E.; Hoyle, J.; Johnson, B.F.G.; Lewis, J.; McPartlin, M. J. Chem. Soc., Chem. Commun. 1990, 1443−1445.
    2. Brandl, M.; Brunner, H.; Cattey, H.; Mugnier, Y.; Wachter, J.; Zabel M. J. Organomet. Chem. 2002, 659, 22−28.
    3. Chatterjee, D. Coord. Chem. Rev. 2008, 252, 176−198.
    4. MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1983, 2, 1194−1202.
    5. Nicholls, J. N. Polyhedron 1984, 3, 1307−1319.
    6. Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1986, 25, 4514−4519.
    7. (a) S. S. D. Brown, I. D. Salter and T. Adatia, J. Chem. Soc., Dalton Trans., 1993, 559−566. (b) Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1994, 33, 1087−1093.
    8. Bodensieck, U.; Meister, G.; Stoeckli-Evans, H.; Suss-Fink, G. J. Chem. Soc., Dalton Trans. 1992, 2131−2132.
    9. Bodensieck, U.; Stoeckli-Evans, H.; Suss-Fink, G. Angew. Chem., Int. Ed. 1991, 30, 1126−1127.
    10. 謝明惠,郭欣慧,未發表之結果。
    11. Shieh, M.; Miu, C.-Y.; Huang, K.-C.; Lee, C.-F.; Chen, B.-G. Inorg. Chem. 2011, 50, 7735−7748.
    12. Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20−30.
    13. Takei, I.; Dohki, K.; Kobayashi, K.; Suzuki, T.; Hidai, M. Inorg. Chem. 2005, 44, 3768−3770.
    14. (a) 游宗憲,國立臺灣師範大學碩士論文,2001。(b) 洪昭宇,國立臺灣師範大學碩士論文,2003。
    15. Marko, L.; Takacs, J.; Papp, S.; Marko-Monostory, B. Inorg. Chim. Acta 1980, 45, L189−L90.
    16. (a) Adams, R. D.; Babin, J. E.; Tasi, M., Inorg. Chem. 1987, 26, 2807−2814. (b) Adams, R. D.; Babin, J. E.; Natarajan, K.; Tasi, M.; Wang, J. G., Inorg. Chem. 1987, 26, 3708−3713. (c) Adams, R. D.; Babin, J. E.; Wang, J. G., Polyhedron 1989, 8, 2351−2358. (d) Belletti, D.; Graiff, C.; Lostao, V.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Inorg. Chim. Acta 2003, 347, 137−144.
    17. Shieh, M.; Lin, S.-F.; Guo, Y.-W.; Hsu, M.-H.; Lai, Y.-W. Organometallics 2004, 23, 5182–5187.
    18. (a) Shieh, M.; Chu, Y.-Y.; Hsu, M.-H.; Ke, W.-M.; Lin C.-N. Inorg. Chem. 2011, 50, 565–575. (b) Shieh, M.; Yu, C.-H.; Chu, Y.-Y.; Guo, Y.-W.; Huang, C.-Y.; Hsing, K.-J.; Chen, P.-C.; Lee, C.-F. Chem. Asian J. 2013, 8, 963–973.
    19. Wade, K. J. Chem. Soc. Chem. Commun. 1971, 792–793.
    20. Adams, R. D.; Katahira, D. A. Organometallics 1982, 1, 53–59.
    21. (a) 賴韻文,國立臺灣師範大學博士論文,2005。 (b) Das, B.K.; Kanatzidis, M.G. Polyhedron 1997, 16, 3061–3066.
    22. (a) Weng, W.; Arif, A.M.; Ernst, R.D. J. Clust. Sci. 1996, 7, 629–641. (b) Straub, T.; Haukka, M.; Pakkanen, T. A. J. Organomet. Chem. 2000, 612, 106–116.(c) Cullen, W. R.; Rettig, S. J.; Zhang, H. Organometallics 1992, 11, 1000–1002. (d) Cullen, W. R.; Rettig, S. J.; Zhang, H. Organometallics 1991, 10, 2965–2969. (e) Cullen, W. R.; Rettig, S. J.; Zhang, H. Organometallics 1993, 12, 1964−1968.
    23. 繆佳曄,國立臺灣師範大學博士論文,2011。
    24. 謝明惠,朱晏頤,未發表之結果。
    25. Huheey, J. E. Inorganic Chemistry Principles of Structure and Reactivity, Third Edition, Harper & Row Publishers, New York, 1983.
    26. 謝明惠,黃宗毅,未發表之結果。
    27. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    28. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33−38.
    29. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    30. Bard, A. J.; Faulkner L. R. Electrochemical methods Fundamentals and Applications, 2nd ed., John Wiley & Sons: New York, 2001.
    31. (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    32. 謝明惠,林建男,未發表之結果。
    33. (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155−2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173−9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
    34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    35. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.
    36. Lin, Y.-l.; Lee, Y.-m.; Lim, C. J. Am. Chem. Soc. 2005, 127, 11336–11347.
    37. Wiberg, K. B. Tetrahedron 1968, 24, 1083−1096.
    38. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735−746.
    39. Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133, 134105−134105-11.
    40. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297−3305.
    41. (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899−926.
    42. Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
    1. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    2. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90−92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827−1837.
    3. 洪昭宇,國立臺灣師範大學碩士論文,2003。
    4. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33−38.
    5. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.

    無法下載圖示 本全文未授權公開
    QR CODE