研究生: |
彭雅鈴 Ya Ling Peng |
---|---|
論文名稱: |
磷砷化鎵銦薄膜結構調制光譜之研究 Study of Modulation Spectroscopy of Microstructures InGaAsP |
指導教授: | 陸健榮 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 多量子井 、應力 、p-i-n 、光調制反射光譜 、Franz-Keldysh 振盪 |
英文關鍵詞: | multiple quantum wells, strain, p-i-n, photoreflectance (PR), Franz-Keldysh oscillation(FKO) |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們以光調制反射光譜(Photoreflectance/PR)來研究由分子束磊晶法(MBE)長成的磷化銦及磷砷化鎵銦之多層薄膜結構在不同溫度下其電—光性質的變化。實驗結果包含了量子井躍遷及兩組Franz-Keldysh振盪譜形(FKO)。由於樣品內部為p-i-n結構,其p型與n型摻雜可提供大量的空間自由載子,形成空間電荷造成空間電場,由實驗的振盪譜形可推算出內建電場的大小。而藉由理論模型計算可以得到量子井內子能階的躍遷能量值,並與實驗譜線擬合的結果相比較。
We have studied the strained multiple quantum wells (MQW) InGaAsP/InP p-i-n heterostructures using photo-reflectance(PR) at various temperatures. The samples used in our experiments were grown by molecular-beam-epitaxy(MBE). The experimental spectrum consists of various interband transition features and Franz-Keldysh oscillations (FKOs). Experimental spectra were fitted to calculated lineshapes to extract correct interband transition energies and internal electric filed, then compared to theoretical results.
1. Peter J. A. Thijs, Luk F. Tiemeijer, J. J. M. Binsma and Teus van Dongen, IEEE J. Quantum Electron. 30, 477 (1994).
2. J. S. Major, Jr., D. W. Nam, J. S. Osinski and D. F. Welch, IEEE Photon. Technol. Lett. 5, 594 (1993).
3. T. Ikoma, “Semiconductors and Semimetals”, vol.30, Academic Press, New York, 1990, Ch. 1.
4. T. Ishikawa and J. E. Bowers, IEEE J.Quantum Electron. 30, 562 (1994).
5. S. Adachi, “Physical Properties of Ⅲ-Ⅴ Semiconductor Compounds”, John Wiley and Sons, New York, 1992.
6. Bernard Diu, Franck Laloe, and Claude Cohen-tannoudji, “Quantum Mechanics”, Ch. 13.
7. J. D. Jackson, “Classical Electrodynamics”, 2nd., Ch. 7.
8. K. Seeger “For Semiconductor Physics : An Introduction” 5thed, vol.40, p341.
9. L. David, Greenaway and Gunther Harbeke, “Optical Properties and Band Structure of Semiconductors”, Ch. 4.
10. Seitz, F., “The Moden Theory of Solids”.
11. Robert Eisberg and Robert Resnick, “Quantum Physics of Atoms, Molecules, Solids, Nuclei and particles”, Ch. 4.
12. 沈學礎“半導體光學性質”
13. B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
14. T. S. Moss, “Handbook on Semiconductors”, North Holland, N. Y., Vol.2, p109 (1980).
15. H. Shen and F. H. Pollak, Phys. Rev. B42, 7079 (1990).
16. R. N. Bhattacharya, H. Shen, P. Parayanthal and Fred H. Pollak, Phys. Rev. B37, 4044 (1988).
17. A. E. Aspnes and A. A. Studna, Phys. Rev. B15, 2127 (1977).
18. M. Cardona, “Modulation Spectroscopy”, Academic, N. Y. (1969).
19. B. V. Shanabrook, O. J. Glembocki and W. T. Beard, Phys. Rev. B35, 2540 (1987).
20. D. G. Seiler and C. L. Littler “The Spectroscopy of Semiconductors”, Vol.2, p255.
21. E. O. Kane, Phys. Rev. 178, 1368 (1969).
22. K. Suzuki, and J. C. Hensel, Bull. Am. Phys. Soc. 14, 113 (1969).
23. C. Y. P. Chao, and S. L. Chuang, Phys. Rev. B46, 4110 (1992).
24. S. L. Chuang, Phys. Rev. B43, 9649 (1991).
25. R. L. Moon, G. A. Antypas, and L. W. James, J. Electron. Mater. 3, 635 (1974).
26. M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).
27. P. Lawaetz, Phys. Rev. B4, 3460 (1971).
28. Takuya Ishikawa, and John E. Bowers, IEEE J. of Quantum Electron. 30, 562 (1994).
29. C. Starck, J. Y. Emery, R. J. Simes, M. Matabon and L. Goldstein, J. Crystal Growth, 120, 180 (1992).
30. J. Barrau, O. Issanchou, M. Brousseau, A. Mircea, and A. Ougazzaden, J. Appl. Phys, 77, 821 (1995).
31. S. M. Sze, “Physics of Semiconductor Devices” 2nd, John Wiley and Sons, 1983, Ch. 1~2.
32. Michael Shur, “Physics of Semiconductor”, Prentice Hall, New Jersey, 1990, Ch. 1~2.
33. B.Sapoval and C. Hermann, “Physics of Semiconductors”, Spring Verlag, New York, 1988, Ch. 8.
34. G. Bastard, Phys. Rev. B24, 5693 (1981).
35. Bjorn Jonsson and Sverre T. Eng, IEEE J. of Quantum Electron. 26, 2025 (1990).
36. R. W. Martin, S. L. Wong, R. J. Warburton, and R. J. Nicholas, Phys. Rev. B50, 7660 (1994).