研究生: |
陳翔竣 Chen, Hsiang-Chun |
---|---|
論文名稱: |
以類別資料進行土地覆蓋時空變化熱點偵測 Using Categorical Data to Detect the Spatial Temporal Hot Spot of Land Cover Change |
指導教授: |
張國楨
Chang, Kuo-Chen |
口試委員: |
張國楨
Chang, Kuo-Chen 陳俊愷 Chen, Chun-Kai 譚智宏 Tan, Chih-Hung |
口試日期: | 2022/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 土地利用/土地覆蓋 、類別空間資料 、空間統計 、多時期 、變化偵測 |
英文關鍵詞: | Land use/ Land cover, Categorical spatial data, Spatial statistics, Local indicator for categorical data (LICD), Mann-Kendall trend test, Multitemporal, Change detection |
研究方法: | 資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202300415 |
論文種類: | 學術論文 |
相關次數: | 點閱:118 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,如今人類能輕易改變地球上大部分地區之自然環境,以符合自身使用需求,但若僅專注於經濟發展而忽略環境保育,將會對全球的氣候條件和生態結構造成無法回復的破壞。為避免發生這樣的悲劇,政府與非政府的相關機構需要能有效監測土地利用和土地覆蓋變化,以達到有效的資源管理,並規劃或調適土地利用計畫。遙測資料是目前取得大量土地利用和土地覆蓋資料最快的方法,在多樣的遙測資料中,衛星影像因其時間解析度高與取得成本低的優勢,常被研究者用做土地覆蓋變化研究之資料來源。而在常見以衛星影像討論土地覆蓋變化的方法中,classification-based approach因能完整討論類別間變化關係,故為多數研究者採用之研究方法。然而,前人研究在以土地覆蓋類別資料討論土地覆蓋變化時,通常只比較時間序列中兩個相異時間點的土地覆蓋在數量上與空間位置上的差異,但這種方式無法完整利用多時期土地覆蓋資料中的時間序列特性。因此,本研究結合LICD與Mann-Kendall trend test,提出適用於類別資料的時空變化熱點偵測演算法,並以此演算法分析台灣宜蘭縣蘇澳鎮新馬都市計畫區2006年至2016年間的土地覆蓋變化。研究結果顯示,本研究提出的演算法能呈現出多時期土地覆蓋資料中,相異土地覆蓋類別的時空變化樣態,而此分析結果能在相關政府單位或學者進行資源管理或規劃土地利用計畫時,提供其有用的決策輔助資訊。
With the development of science and technology, people can easily change the natural environment of most parts of the earth to what we want. However, if we blindly pursue economic development and ignore environmental protection, it will cause serious damage to the global climatic conditions and ecological structure. To avoid such tragedies, relevant government and non-government agencies need to be able to effectively monitor land use and land cover changes. In order to achieve effective resource management and plan or adapt land use plans. Remote sensing data is currently the fastest method to obtain a large amount of land use and land cover data. Among the various remote sensing data, satellite images are often used by researchers to derive land cover data and doing change detection due to their advantages of high time resolution and low cost. source. And among the common methods for discussing land cover change with satellite images, the classification-based approach is the method most used by researchers because it can fully discuss the relationship between categories. Previous studies are mostly only comparing the differences in land cover maps between two time periods when discussing land cover change. However, this method does not fully utilize the time series characteristics of multi-period land cover data. Therefore, this study attempts to combine the LICD and the Mann-Kendall trend test to propose a hot spot analysis algorithm for spatial and temporal changes suitable for categorical data. And this algorithm is used to analyze the land cover changes in the Xincheng and Marseille areas, Suao Town, Yilan County from 2006 to 2016. The research results show that this algorithm can present the temporal and spatial aggregation trends of various categories from the multi-period land cover category data. The results of such analysis can assist urban planners and relevant government agencies with useful information in planning.
交通部中央氣象局(2022) 檢自: https://www.cwb.gov.tw/V8/C/A/organ/46708.html
內政部國土測繪中心(2019) 土地利用分級分類系統表(陸域部分)疑義案例彙編
許瑛卉, & 曹治中. (2007). 蘇澳鎮居民對北宜高通車觀光衝擊認知之研究. 社會科教育研究(12), 277-306.
宜蘭縣政府委託臺灣省政府建設廳公共工程局代編(1974) 蘇澳都市計畫書(新馬地區)
Amini Parsa, V., Yavari, A., & Nejadi, A. (2016). Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Modeling Earth Systems and Environment, 2(4), 1-13. doi:10.1007/s40808-016-0227-2
Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964): US Government Printing Office.
Anselin, L. (1995). Local Indicators of Spatial Association - LISA. Geographical analysis, 27.2, 93-115. doi:10.1111/j.1538-4632.1995.tb00338.x
Anselin, L. (2018). A Local Indicator of Multivariate Spatial Association: Extending Geary's c. Geographical analysis, 51(2), 133-150. doi:10.1111/gean.12164
Anselin, L., & Li, X. (2019). Operational Local Join Count Statistics for Cluster Detection. Journal of Geographical Systems, 21(2), 189-210. doi:10.1007/s10109-019-00299-x
Araújo, A. C. (2002). Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. Journal of Geophysical Research, 107(D20). doi:10.1029/2001jd000676
Asokan, A., & Anitha, J. (2019). Change detection techniques for remote sensing applications: a survey. Earth Science Informatics, 12(2), 143-160. doi:10.1007/s12145-019-00380-5
Bivand, R. S., Wilk, J., & Kossowski, T. (2017). Spatial association of population pyramids across Europe: The application of symbolic data, cluster analysis and join-count tests. Spatial Statistics, 21, 339-361. doi:10.1016/j.spasta.2017.03.003
Boots, B. (2003). Developing local measures of spatial association for categorical data. Journal of Geographical Systems, 5(2), 139-160. doi:10.1007/s10109-003-0110-3
Carrer, F., Kossowski, T. M., Wilk, J., Pietrzak, M. B., & Bivand, R. S. (2021). The application of Local Indicators for Categorical Data (LICD) to explore spatial dependence in archaeological spaces. Journal of Archaeological Science, 126. doi:10.1016/j.jas.2020.105306
Chou, Y. H. (1991). Map resolution and spatial autocorrelation. Geographical analysis, 23(3), 228-246.
Ciresan, D., Giusti, A., Gambardella, L., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. Advances in neural information processing systems, 25.
Civco, D. L., Hurd, J. D., Arnold, C. L., & Prisloe, S. (2000). Characterization of suburban sprawl and forest fragmentation through remote sensing applications. Paper presented at the Proceedings of the American Society of Photogrammetry and Remote Sensing.
Cliff, A. D. (1973). Spatial autocorrelation [by] A. D. Cliff and J. K. Ord. London: Pion.
Cliff, A. D. (1981). Spatial processes : models & applications / A.D. Cliff & J.K. Ord. London: Pion.
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310(5754), 1674-1678. doi:10.1126/science.1118160
Flanders, D., Hall-Beyer, M., & Pereverzoff, J. (2003). Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Canadian Journal of Remote Sensing, 29(4), 441-452.
Fotheringham, A. S. (1997). Trends in quantitative methods I: stressing the local. Progress in Human Geography, 21(1), 88-96.
Fotheringham, A. S., & Brunsdon, C. (1999). Local forms of spatial analysis. Geographical analysis, 31(4), 340-358.
Geary, R. C. (1954). The contiguity ratio and statistical mapping. The incorporated statistician, 5(3), 115-146.
Getis, A. (2010). Spatial autocorrelation. In Handbook of applied spatial analysis (pp. 255-278): Springer.
Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric Engineering and Remote Sensing, 60(3), 331-337.
Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the art? Ecosystems, 1(2), 143-156.
Hamed, K. H. (2009). Exact distribution of the Mann–Kendall trend test statistic for persistent data. Journal of Hydrology, 365(1-2), 86-94. doi:10.1016/j.jhydrol.2008.11.024
Harris, N. L., Goldman, E., Gabris, C., Nordling, J., Minnemeyer, S., Ansari, S., . . . Potapov, P. (2017). Using spatial statistics to identify emerging hot spots of forest loss. Environmental Research Letters, 12(2). doi:10.1088/1748-9326/aa5a2f
Hubert, L. J., & Golledge, R. G. (1981). A heuristic method for the comparison of related structures. Journal of Mathematical Psychology, 23(3), 214-226.
Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91-106. doi:10.1016/j.isprsjprs.2013.03.006
Iyer, P. K. (1949). The first and second moments of some probability distributions arising from points on a lattice and their application. Biometrika, 135-141.
Jelinski, D. E., & Wu, J. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape ecology, 11(3), 129-140.
Kendall, M. G. (1948). Rank correlation methods.
Kettig, R. L., & Landgrebe, D. (1976). Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on geoscience Electronics, 14(1), 19-26.
Längkvist, M., Kiselev, A., Alirezaie, M., & Loutfi, A. (2016). Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. Remote Sensing, 8(4). doi:10.3390/rs8040329
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539
Lewis, A., Lymburner, L., Purss, M. B. J., Brooke, B., Evans, B., Ip, A., . . . Wyborn, L. (2015). Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube. International Journal of Digital Earth, 9(1), 106-111. doi:10.1080/17538947.2015.1111952
Li, H., & Reynolds, J. (1995). On definition and quantification of heterogeneity. Oikos, 280-284.
Li, H., & Reynolds, J. F. (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape ecology, 8(3), 155-162.
Li, H., & Reynolds, J. F. (1994). A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology, 75(8), 2446-2455.
Li, J., Tan, S., Chen, F., & Feng, P. (2014). Quantitatively analyze the impact of land use/land cover change on annual runoff decrease. Natural Hazards, 74(2), 1191-1207.
Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2017). A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information. European Journal of Remote Sensing, 47(1), 389-411. doi:10.5721/EuJRS20144723
Liu, S., Bruzzone, L., Bovolo, F., Zanetti, M., & Du, P. (2015). Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4363-4378. doi:10.1109/tgrs.2015.2396686
Lo, C. (1977). Landsat images as a tool in regional analysis: the example of Chu Chiang (Pearl River) delta in South China. Geoforum, 8(2), 79-87.
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. doi:10.1080/01431160600746456
Luo, X., Xu, S., & Yan, H. (2020). Application of Deep Belief Network in Forest Type Identification using Hyperspectral Data. Advances in Science, Technology and Engineering Systems Journal, 5(6), 1554-1559. doi:10.25046/aj0506186
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
Marceau, D. J. (1999). The scale issue in the social and natural sciences. Canadian Journal of Remote Sensing, 25(4), 347-356.
Marschner, F. J., & Anderson, J. R. (1967). Major land uses in the United States. Retrieved from
McHarg, I. L. (1969). Design with nature: American Museum of Natural History New York.
Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243-251.
Moskal, L. M., Styers, D. M., & Halabisky, M. (2011). Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data. Remote Sensing, 3(10), 2243-2262. doi:10.3390/rs3102243
Newman, M. E., McLaren, K. P., & Wilson, B. S. (2011). Comparing the effects of classification techniques on landscape-level assessments: pixel-based versus object-based classification. International Journal of Remote Sensing, 32(14), 4055-4073. doi:10.1080/01431161.2010.484432
Nolè, G., Lasaponara, R., Lanorte, A., & Murgante, B. (2014). Quantifying Urban Sprawl with Spatial Autocorrelation Techniques using Multi-Temporal Satellite Data. International Journal of Agricultural and Environmental Information Systems, 5(2), 19-37. doi:10.4018/ijaeis.2014040102
Norman, J. W. T. (1970). Annals Map Supplement Number Twelve: Land Use in the Southwestern United States-from Gemini and Apollo Imagery. Annals of the Association of American Geographers, 60(1), 208-210. Retrieved from http://www.jstor.org/stable/2569130
Openshaw, S. (1979). A million or so correlation coefficients, three experiments on the modifiable areal unit problem. Statistical applications in the spatial science, 127-144.
Openshaw, S. (1981). The modifiable areal unit problem. Quantitative geography: A British view, 60-69.
Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27(4), 286-306.
Ord, J. K., & Getis, A. (2001). Testing for local spatial autocorrelation in the presence of global autocorrelation. Journal of regional science, 41(3), 411-432.
Petit, C., Scudder, T., & Lambin, E. (2010). Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22(17), 3435-3456. doi:10.1080/01431160010006881
Phiri, D., & Morgenroth, J. (2017). Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 9(9). doi:10.3390/rs9090967
Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77-84. doi:10.1016/j.ejrs.2015.02.002
Riebsame, W. E., Meyer, W. B., & Turner, B. (1994). Modeling land use and cover as part of global environmental change. Climatic change, 28(1), 45-64.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234-241).
Sadeghi, V., Farnood Ahmadi, F., & Ebadi, H. (2016). Design and implementation of an expert system for updating thematic maps using satellite imagery (case study: changes of Lake Urmia). Arabian Journal of Geosciences, 9(4). doi:10.1007/s12517-015-2301-x
Schlagel, J. D., & Newton, C. M. (1996). A GIS-based statistical method to analyze spatial change. Photogrammetric Engineering and Remote Sensing, 62(7), 839-844.
Siegel, S. (1957). Nonparametric statistics. The American Statistician, 11(3), 13-19.
Spurr, S. H. (1948). Aerial photographs in forestry. Aerial photographs in forestry.
Taylor, L., & Taylor, R. (1977). Aggregation, migration and population mechanics. Nature, 265(5593), 415-421.
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1), 234-240.
Tsai, Y.-M., Chang, K.-C., Chen, C.-K., & Chou, H.-C. (2019). An Application of Deep Learning Image Classification on Landslide Automated Detection with FORMOSAT-2 Satellite Imagery. 地理研究(71), 67-78.
Upton, G., & Fingleton, B. (1985). Spatial data analysis by example. Volume 1: Point pattern and quantitative data: John Wiley & Sons Ltd.
Wang, Q., Shi, W., Atkinson, P. M., & Li, Z. (2015). Land Cover Change Detection at Subpixel Resolution With a Hopfield Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1339-1352. doi:10.1109/jstars.2014.2355832
Yang, X. (2002). Satellite monitoring of urban spatial growth in the Atlanta metropolitan area. Photogrammetric Engineering and Remote Sensing, 68(7), 725-734.
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2-3), 317-328. doi:10.1016/j.rse.2005.08.006
Zhang, Z., Liu, Q., & Wang, Y. (2018). Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753. doi:10.1109/lgrs.2018.2802944