簡易檢索 / 詳目顯示

研究生: 林宏斌
Hung-Bin Lin
論文名稱: 碳六十/大環胺醚表面聲波感測器研製與應用
Preparation and Application of C60-Cryptand Coated Surface Acoustic Wave Sensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 111
中文關鍵詞: 表面聲波碳六十大環胺醚感測器
英文關鍵詞: SAW, C60, cryptand, sensor
論文種類: 學術論文
相關次數: 點閱:189下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳六十/大環胺醚表面聲波感測器研製與應用
    摘要
    本研究中利用C60-cryptand[2,2]與Co2+/C60-cryptand[2,2]做為表面聲波(SAW, Surface Acoustic Wave)感測器之塗佈物質,分別來對一些揮發性有機氣體及CO氣體進行感測,並將C60-cryptand[2,2]表面聲波晶體應用於氣相層析系統。藉由表面聲波晶片上塗佈物質(C60-cryptand[2,2])吸附這些有機物或CO導致表面聲波感測器頻率下降來進行偵測。並以本實驗室自撰之程式讀取數據和繪圖。
    在靜相系統研究中首先選擇了三種化合物(C60, cryptand [2,2] 及C60-cryptand [2,2] )做為表面聲波晶體之塗佈物質,用以偵測有機氣體。其中以C60-cryptand [2,2]作為塗佈物質具有較高之靈敏度。本研究中也對各種待測有機化合物之不同分子量大小、官能基的種類、異構物的立體障礙、及極性大小進行探討研究,此表面聲波對各種有機物偵測靈敏度順序如下:Alcohols (ROH) > Aldehydes (RCHO) > Ketones (RCOR’); 1-Hexyne>1-Hexene >n-Hexane; Aromatic > cyclo-Alkane > Alkane; 10alcohol > 20alcohol > 30alcohol。此研究結果顯示出C60-cryptand[2,2]塗佈表面聲波晶體對於高極性分子(尤其是易形成氫鍵者)、較大分子量、立體障礙小之化合物有著較高之靈敏度。對大部分之有機待測氣體分子而言,其感測現象皆為可逆性之吸附且可用通入N2來進行脫附。對一般有機氣體而言偵測下限範圍為0.2~2 mg/L。
    在動相表面聲波感測系統研究上,其感測結果大致與靜相表面聲波感系統類似。在氣相層析表面聲波感測系統(GC-SAW)研究方面,碳六十-大環胺醚表面聲波偵測器對於分子極性大小、碳數多寡及同分異構物具有分辨能力,比一般商業化之常用於氣相層析的熱導偵測器偵(TCD, Thermal Conductivity Dector)只能從導熱係數來區分化合物更具有選擇性。
    在表面聲波感測系統對CO氣體偵測方面,研究中曾利用各種金屬離子/碳六十-大環胺醚錯合物(如Ti4+/C60-cryptand [2,2]、Co2+/C60-cryptand [2,2]、Al3+/C60-cryptand等)做為表面聲波晶體之塗佈物,用以偵測CO氣體。其中以Co2+/C60-cryptand[2,2]之錯合方式對CO氣體具有較高之靈敏度。本研究中發現不同陰離團之金屬鹽類陰離子對於CO氣體之感測訊號並無顯著之影響。而此Co2+/C60-cryptand[2,2]表面聲波感測器對CO之偵測下限可達0.13ppm。

    Preparation and Application of C60-Cryptand Coated Surface Acoustic Wave Sensor
    Abstract
    A C60-cryptand [2,2] coated surface acoustic wave (SAW) detection system was prepared and applied as Gas Chromatographic detector for various vapors. The frequency of surface acoustic wave oscillator decrease due to the adsorption of gas molecules on C60-cryptand [2,2] . The C60-cryptand [2,2] coated surface acoustic wave sensor was used to measure various organic moleculesr and CO gas. A software was written to control the interface and data acquisition.
    In the stationary system, three coating materials (C60, cryptand [2,2] and C60-cryptand [2,2] ) was tested in organic molecules. The C60-cryptand [2,2] coated SAW dector exhibited more sensitive to polar molecule than Fullerene or cryptand [2,2] coated system respectively. Effect of functional groups, molecular weight, steric hindrance and polarity of organic molecules in both static and flow cell on frequency response of surface acoustic wave sensor had been investigated. The frequency shifts of the C60-cryptand [2,2] coated SAW sensor for various organic molecules and isomer in the order: Alcohols (ROH) > Aldehydes (RCHO) > Ketones (RCOR’); 1-Hexyne>1-Hexene >n-Hexane; Aromatic > cyclo-Alkane > Alkane; 10alcohol > 20alcohol > 30alcohol. The greater frequency shift of a molecule with large molecular weight, less steric hindrance and more polar molecule (especially can form hydrogen bond) was funded. The adsorption of C60-cryptand [2,2] to most organic molecules was found to be physical adsorption(a reversible type) ,which could be desorbed by introducing N2 gas. The detection system also showed the good detection limit of 0.2~3 mg/L for organic molecules.
    The frequency response of C60-cytptand[2,2] coated SAW for various organic molecules in the flow system showed quite accordance with that in static system. In the application of Gas Surface acoustic Wave (GC-SAW) in GC, the C60-cryptand[2,2] SAW sensor showed higher selectivity than the TCD for polar organic molecules.
    In CO gas study, various metal-ion/C60-cryptand[2,2] adsorbents, e.g. Ti4+/C60-cryptand [2,2]; Co2+/C60-cryptand [2,2]; Al3+/C60-cryptand, were used to adsorb and detect CO gas. The Co2+/C60-cryptand [2,2] coated SAW sensor exhibited more sensitive than another adsorbent for CO gas. It also showed no significant effect for anion group (e.g. SO42-; NO3-; Cl-). The detection limit of the SAW sensor for CO was found to be about 0.13 ppm.

    第一章 緒論 1 1-1 冠狀醚及大環胺醚 1 1-1-1 冠狀醚及大環胺醚簡介 1 1-1-2 大環胺醚的應用 3 1-2 碳六十 5 1-2-1 碳六十的發現 5 1-2-2 碳六十的基本性質 7 1-2-3 碳六十的化學反應 10 1-2-3.1 碳六十的有機化學反應 11 (1) 與胺類化合物之反應 11 (2) 鹵化反應 13 (3) 氫化反應 13 (4) 氧化反應 13 (5) 環化加成反應 14 a.[1+2]環化加成 14 b.[2+2]環化加成 15 c.(3+2)環化加成反應 15 d.[4+2]環化加成 16 1-2-3.2 碳六十的無機反應 16 1-2-4 碳六十和氣體分子的交互作用 17 1-2-5 碳六十的應用 18 1-2-5.1 高溫超導之應用 18 1-2-5.2 藥物上的應用 19 1-2-5.3 在感測器上的應用 19 1-3 聲波偵測器 20 1-3-1 壓電晶體 20 1-3-2 聲波感測器之分類 22 1-3-2.1 TSM感測器 22 1-3-2.2 SH-APM感測器 23 1-3-2.3 表面聲波感測器 24 1-3-2.4 SH-SAW感測器 24 1-4 表面聲波 27 1-4-1 表面聲波之簡介 27 1-4-2 表面聲波之特性 27 1-4-3 SAW偵測方式 32 1-4-4 表面聲波之原理 34 1-5 表面聲波元件在感測器上之應用 38 1-5-1 表面聲波元件在氣相上的應用 38 1-6 實驗目的與動機 42 第二章 實驗部分 43 2-1藥品及儀器 43 2-2 碳六十-大環胺醚化合物之合成 43 2-3 表面聲波原件的處理 44 2-3-1 表面聲波元件 44 2-3-2 表面塗佈液之配製 45 2-4 實驗系統 46 2-4-1 靜相系統 46 2-4-2 動相模擬系統 47 2-4-4 一氧化碳(CO)偵測系統 49 2-4-5 電腦系統程式 50 第三章 結果與討論 51 3-1 揮發性有機氣體感測系統 51 3-1-1 有機氣體之感應頻率變化情形 51 3-1-2 表面塗佈物種效應 53 3-1-3 表面塗佈量對訊號的影響 53 3-1-4 不同形式SAW與QCM之比較 56 3-1-5 氣體分子碳鏈長度效應 58 3-1-6 分子立體結構效應 61 3-1-7 醇醚同分異構物之感測訊號探討 63 3-1-8 不同官能基之感應訊號比較 65 3-1-9 低極性有機氣體感應研究 68 3-1-10 待測有機物濃度效應及偵測下限 70 3-1-11 動相SAW感測系統 72 3-1-12 SAW動相系統對有機環狀化合物感應研究 76 3-1-13 SAW動相系統中之待測物濃度效應 76 3-1-14 碳六十-大環胺醚SAW氣體偵測器的再現性 80 3-1-15 氣體流速效應 80 3-1-16有機物官能基效應 84 3-1-17 動相及靜相SAW系統之比較 84 3-1-18 碳六十-大環胺醚SAW偵測器與熱導偵測器(TCD)偵測比較 86 3-1-19 有機溶劑在碳六十-大環胺醚表面聲波偵測器與熱導偵測器(TCD)之偵測比較 86 3-1-20 SAW及TCD偵測器感測氯甲烷混合物之比較 89 3-2 CO氣體SAW感測器統 91 3-2-1 CO氣體之感應頻率變化情形 91 3-2-2 不同塗佈物對CO感應頻率變化影響 91 3-2-3 塗佈物中不同陰離子團對CO感應頻率變化影響 94 3-2-4 塗佈物中不同金屬離子對CO感應頻率變化影響 94 3-2-5不同塗佈量對CO感應頻率變化影響 97 3-2-6 CO濃度效應對感應頻率變化的影響 97 3-2-7 表面聲波晶體對CO氣體偵測之再現性 100 3-3 碳六十-大環胺醚在液相的應用 100 第四章 結論 102 參考資料 103 附錄 108

    參考資料
    1.C. F. Perderson, Cyclic polyethers and their complexs with metal salts, J. Am. Chem. Soc., 1967, 89, 7017-7036
    2.B. Dietrich, J. M. Lehn, T. P. Sauvage, Les cryptates, Tetrahedron Letters, 1969, 34, 2889-2892
    3.J. Cram, The Design of Molecular Hosts, Guest, aand Their Complexes, Science, 1988, 240, 760-767
    4.H. W. Kroto, J. R. Hoath, S. C. Bricn, R. F. Curl, R. E. Smalley, C60:Buckminsterfullerene. Nature. 1985, 318, 162
    5.W. Kratschmer, D. R. Huffman, Solid C60 : a new form of carbon. Nature(London). 1990, 347, 354
    6.W. A. Scrirens, P. V. Bedworth, J. M. Tour, Purification of Gram Quanties of C60. A New Inexpensive and Facile Method. J. Am. Chem. Soc. 1992, 114, 7917
    7.J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren, F. J. Hollander, Crystal Structure of Osmylated C60 : Confirmation of the Soccer Ball Framework. Science.1991, 252, 312
    8.H. W. Kroto, A. W. Allaf, S. P. Balm, C60: Buckminsterfullerence. Chem. Rev. 1991 ,91 ,1213
    9.Chen, W.; Xu, Z. Temperature Dependence of C60 Solubility in Different Solvent. Fullerence Science And Technology. 1998, 6 , 695
    10.R. E.H Aufler, J. Conceicao, L. P. F. Chibante, Y. Chia, N. E. Byrne, S. Flangan, M. M. Haley, S. C. O’Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Smalley, Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 1990, 94, 8634
    11.R. Taylor, R. M. Walton, The chemistry of fullerenes. Nature. 1993, 363, 685
    12.Q. Xie, E. Perez-Cprodero, L. Echegoyen, Electrochemical Detection of C606- and C706- : Enhanced Stability of Fullerides in Solution, J. Am. Chem. Soc., 1992, 114, 1378-3980
    13.A. Hirsch, Qiaoying Li, F. Wudl, Globe-trotting Hydrogen on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6, Angew. Chem. Int. ED. Engl., 1991, 30, 1309-1310
    14.M. Creegan, L. Robbins, K. Robbins, M. Millar, D. Sherwood, J. Tindall, M. Cox, Synthesis and Characterization oh C60O, the First Fullerene Expoxide, J. Am. Chem. Soc., 1992, 114, 1103-1105
    15.R. Birkett, Peter B. Hitchock, Harold W. Kroto, Roger Taylor, David R. M. Walton, Preparation and Characterization of C60Br6 and C60Br8, Nature, 1992, 357, 479-481
    16.R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, L. J. Wilson, R. F. Curl, R. E. Smalley, J. Phys. Chem., 1990, 94, 8634-8636
    17.M. Creegan, L. Robbins, K. Robbins, M. Millar, D. Sherwood, J. Tindall, M. Cox, Synthesis and Characterization oh C60O, the First Fullerene Expoxide, J. Am. Chem. Soc., 1992, 114, 1103-1105
    18.A. Skiebe, A. Hirsch, J. CHEM. SOC. CHEM. COMMUN., 1994, 335-336
    19.B.Kahr and R.G. Cooks, etal, J. Org. Chem., 1992, 57 ,5069
    20.T, Akasaka, W. Ando, K. Kobayashi, S. Nagase, Addition of Azomethine Ylides to C60 : Synthesis,Characterization, and Functionalization of Fullerene Pyrrolidines. J. Am. Chem. Soc., 1993, 115, 9798
    21.W. Silwa, Fullerene Science and Technology, 1996, 4143, 633
    22.Paul J. Fagan, Joseph C. Calabrese, Brian Malone, Science, 1991, 252, 1160-1161
    23.T. Arai, H. Suematsu, Defect-Associated Nicroporous Nature of C60 Crystals, J. Phys. Chem., 1993, 97, 6764-6766
    24.M. Fastow, Y. Kozirovski, M. Folman, J. Heidberg, IR Spectra of CO and NO Adsorbed, J. Phys. Chem., 1992, 96, 6126-6128
    25.R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamolia, R. M. Flemong, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel, Conducting Films of C60 and C70 by alkai-metal doping, Nature, 1991, 350, 320-322
    26.R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, Charles Wilkims, Simon H. Friedman, Diane, L. DeCamp, George L. Kenyon, J. Am. Chem. Soc., 1993, 115, 6510-6512
    27.游若琳, 碳六十/聚合物石英壓電晶體偵測器之研製與應用, 國立台灣師範大學化學研究所碩士論文, 1999
    28.莊佳雯, 碳六十固定化酵素生物感測器的研製與應用, 國立台灣師範大學化學研究所碩士論文, 2000
    29.C. Lu, C. A. W. Czanderna, Applications of piezoelectric quartz crystal microbalance. Elsevier Science. New York, 1984.
    30.吳朗. 電子陶瓷-壓電. 全欣科技圖書, 1994
    31.吳朗. 感測與轉換原理,元件與應用, 全欣科技圖書, 1992
    32.彭成鑑, 壓電材料. 科儀新知, 1995, 16, 18-29
    33.Michael J. Velleloop, Acoustic wave sensors and their technology, Ultransonics, 1998, 36, 7-14
    34.H. Wohltjen, D. Ballantine, R. White, S. Martin, A. Ricco, E. Zellers, G. Frye, Acoustic Wave Sensor-Theory, Design, and Physico-Chemical Applications, Academic Press: San Diego, 1997, 39
    35.M. Schweyer, J. Hilton, J. Munson, J. Andel, A Novel Monolithic Piezoelectric Sensor, Ultrasonics Symposium Proceeding, 1997, 1 ,371-374
    36.S. Martin, Gas Sensing with Acoustic Devices, Ultrasonics Symposium Proceeding, 1996, 1, 423-434
    37.M.Schweyer, J. Andle, D. McAllister, L. French, J. Veyelino, An Acoustic Plate Mode Sensor for Aqueous Mervury, Ultrasonics Symposium Proceeding, 1996, 1, 355-358
    38.L. Wu, C. Y. Shen, Tu-Tang Shen, Surface Acoustic Wave Sensors, Chemistry(The Chinese chem. soc., Tapipe), 2001, 59, 279-286
    39.W. Welsch, C. klein, M. von Schickfus, S. Hunklinger, Development of a surface acoustic wave immunosensor, Ana.l Chem., 1996, 68, 2000-2004
    40.H. Wholtjen, R. White, D. Ballantine, S. Martin, A. Ricoo, E. Zellers, , G. Frye, Acoustic Wave Sensor-Theory, Design, and Physico- Chemical Applications, Academic Press: San Diego, 1997, 39
    41.J. Grate, S. Martin, R. White, Acoustic Sensors Microsensors, Anal. Chem., 1993, 65, 940-948
    42.Lord Rayleigh, On Waves Propagated along the Plane Surface of an Elastic Solid, Proc. London Math. Soc., 1885, 17, 4-11
    43.R. M. White amd F. W. Voltmer, Direct Piezoelectric Coupling to Surface Elastic Waves, Appl. Phys. Lett. , 1965, 7, 314-316
    44.D. Morgan, Surface-Wave Devices for Signal Processing, Amsterdam, 1991, 152
    45.D. P. Morgan, Surface Acoustic Wave Devices and Application I. Introductory Review, Ultrasonics, 1973, 11, 121-131
    46.H. Wohltjen, Mechanism of Operation and Design Considerations for Surface Acoustic Wave Device Vapour Sensors, Sensors and Actuators, 1984, 5, 307-325
    47.M. F. Lewis, Durface Acoustic Wave devices and Applications 6. Oscillators-the next successful surface acoustic wave device?, Ultrasonics, 1974, 12, 115-123
    48.E. A. Ash, Acoustic Aurface Wave, 1978, Speringer-Verlag, New York
    49.B. A. Auld, Acoustic Fields and Waves in Solids, 1973 , Wiley-Interscience, 2th ed., New York
    50.H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description, Anal. Chem., 1979, 51, 1458-1464
    51.H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. II. Gas Chromatography Detector, Anal. Chem., 1979, 51,1465-1470
    52.H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. III. Thermomechanical Polymer Analyzer, Anal. Chem., 1979, 51, 1470-1475
    53.DeQuan Li , Min Ma, Surface acoustic wave microsensors based on cyclodextrin coatings, Sensors and Actuators B, 2000, 69, 75–84
    54.M. Penza, L. Vasaull, SAW NOx gas Sensor using WO3 thin-film sensitive coating, Sensors and Actuators B, 1997, 41, 31-36
    55.J. Wagner, M. von Schickfus, Inductively coupled polymer coate surface acoustic wave sensor for organic vapors, Sensors and Actuators B, 2001, 76, 58-63
    56.F. Josse, F. Bender, Richard W. Cernosek, Guided Shear Horizontal Surface Acoustic WaveSensors for Chemical and Biochemical Detectionin Liquids, Anal. Chem., 2001, 73, 5937-5944
    57.Dezhong Lin, Kai Ge, Kang Chen, Lihua Nie, Shouzhuo Yao, Clinical analysis of urea in human blood by couplying a surface acoustic wave sensor with urease extracted from pumpkin seeds, Analytica Chimica Acta, 1995, 307, 61-69
    58.邱求三, 大環胺醚在壓電晶體偵測器及液體層析上之應用, 國立台灣師範大學化學研究所博士論文, 1998
    59.凌永建, 陳秋雲, 黃依萍, 化學分析的偵測極限(上), 科儀新知, 1994, 16, 70-83

    QR CODE