研究生: |
陳思妤 Chen, Szu-Yu |
---|---|
論文名稱: |
三核苷酸重複序列之髮夾型結構阻礙 hRPA 蛋白的解旋能力 Trinucleotide Repeat Hairpin Impedes Unwinding Ability of Human Replication Protein A (hRPA) |
指導教授: |
李以仁
Lee, I-Ren |
口試委員: |
冀宏源
Chi, Hung-Yuan 孫英傑 Sun, Ying-Chieh |
口試日期: | 2021/08/16 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 單分子螢光共振能量轉移 、單股 DNA 結合蛋白 、人類複製蛋白 A 、三核苷酸重複序列擴增 、CTG 重複序列 |
英文關鍵詞: | single-molecule fluorescence resonance energy transfer (smFRET), single-stranded DNA binding protein(SSB), human Replication Protein A (hRPA), Trinucleotide Repeat (TNR) expansions, CTG repeat sequence |
DOI URL: | http://doi.org/10.6345/NTNU202101163 |
論文種類: | 學術論文 |
相關次數: | 點閱:139 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三核苷酸重複序列與許多神經退化性疾病有關,其容易摺疊成二級結構,常會造成DNA滑動,進而導致DNA的異常擴增。人類複製蛋白A (human Replication Protein A, hRPA)為真核生物當中最豐富的單股DNA結合蛋白,在複製、修復、重組期間,可以避免瞬時存在的單股DNA重新黏合回雙股DNA,或是形成二級結構。hRPA亦有能力解開髮夾型結構與G-四聯體結構等二級結構,以維持基因組的穩定性。
我們使用CTG重複序列之髮夾型結構作為模型系統,以單分子螢光共振能量轉移(single-molecule fluorescence resonance energy transfer)技術來探討hRPA對三核苷酸髮夾型結構的解開能力。我們的結果顯示hRPA可以接近完全地解開長度為可容納一顆hRPA的CTG重複序列之髮夾型結構。但出乎意料地,當髮夾型結構的長度越來越長,hRPA只能部份地解開髮夾型結構。因此我們推測CTG重複序列之髮夾型結構會快速地發生滑動,並且重新構型,形成阻礙hRPA進一步入侵的對齊髮夾型(blunt-end hairpin)結構。而當我們使用抑制髮夾型結構滑動的突變方法進行實驗後,發現hRPA可以完全地解開CTG重複序列之髮夾型結構。因此證明三核苷酸重複序列的滑動阻礙了hRPA的結構解旋能力,而可能導致此類序列的基因不穩定性。
Trinucleotide repeat (TNR) sequences, associated with many neurodegenerative diseases, fold into secondary structures that often cause DNA slippage, ultimately leading to abnormal expansions of DNA. Replication protein A (RPA), the most abundant single-stranded DNA (ssDNA) binding protein in eukaryotes, protects transient ssDNA from reannealing or forming secondary structures during replication, repair, and recombination. RPA is also capable of unwinding secondary structures, such as hairpin and G-quadruplex, to maintain genomic stability. We used CTG repeat hairpins as a model system to examine the unwinding ability of human RPA(hRPA) to the TNR hairpins, utilizing single-molecule fluorescence resonance energy transfer (smFRET) microscopy. Our results revealed that hRPA near-fully unwinds shorter CTG repeat hairpin, which accommodates one hRPA. Surprisingly, hRPA only partially unwinds the CTG repeat hairpin as the length of the hairpin becomes longer. We proposed that the CTG repeat hairpin quickly undergoes hairpin slippage and reorganizes into a blunt-end hairpin that blocks the further invasion of hRPA. This mechanism is further confirmed by finding fully unwound CTG repeat hairpin when we used mutation assays that inhibit the hairpin slippage. We concluded that slippage hairpin reconfiguration of TNR inhibits the hRPA unwinding, hence, potently lead to the genomic instability.
[1] Brown V, Warren S. Trinucleotide Repeats: Dynamic DNA and Human Disease. 2001.
[2] Mirkin SM. Expandable DNA repeats and human disease. Nature. 2007;447(7147):932-40.
[3] McMurray CT. Mechanisms of trinucleotide repeat instability during human development. Nature Reviews Genetics. 2010;11(11):786-99.
[4] Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Human molecular genetics. 2011;20(19):3811-21.
[5] Alberts B, Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Molecular Biology of the Cell. 4th edition. 2002.
[6] Figueroa AÁ, Cattie D, Delaney S. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex. Biochemistry. 2011;50(21):4441-50.
[7] Santhana Mariappan S, Garcia AE, Gupta G. Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic acids research. 1996;24(4):775-83.
[8] Ni C-W, Wei Y-J, Shen Y-I, Lee I-R. Long-range hairpin slippage reconfiguration dynamics in trinucleotide repeat sequences. The journal of physical chemistry letters. 2019;10(14):3985-90.
[9] Ashton NW, Bolderson E, Cubeddu L, O’Byrne KJ, Richard DJ. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC molecular biology. 2013;14(1):1-20.
[10] Waldman VM, Weiland E, Kozlov AG, Lohman TM. Is a fully wrapped SSB–DNA complex essential for Escherichia coli survival? Nucleic acids research. 2016;44(9):4317-29.
[11] Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic acids research. 2006;34(15):4126-37.
[12] Nguyen B, Sokoloski J, Galletto R, Elson EL, Wold MS, Lohman TM. Diffusion of human replication protein A along single-stranded DNA. Journal of molecular biology. 2014;426(19):3246-61.
[13] Iftode C, Borowiec JA. 5 ‘→ 3 ‘molecular polarity of human replication protein A (hRPA) binding to pseudo-origin DNA substrates. Biochemistry. 2000;39(39):11970-81.
[14] Bochkareva E, Belegu V, Korolev S, Bochkarev A. Structure of the major single‐stranded DNA‐binding domain of replication protein A suggests a dynamic mechanism for DNA binding. The EMBO journal. 2001;20(3):612-8.
[15] Bastin-Shanower SA, Brill SJ. Functional analysis of the four DNA binding domains of replication protein A: the role of RPA2 in ssDNA binding. Journal of Biological Chemistry. 2001;276(39):36446-53.
[16] Ray S, Qureshi MH, Malcolm DW, Budhathoki JB, Çelik U, Balci H. RPA-mediated unfolding of systematically varying G-quadruplex structures. Biophysical journal. 2013;104(10):2235-45.
[17] 黃堃愷。三核苷酸重複序列對 SSB 的載入和再分佈之影響。台北市:國立臺灣師範大學;2019。
[18] Antony E, Lohman TM, editors. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Seminars in cell & developmental biology; 2019: Elsevier.
[19] Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, et al. The bright future of single-molecule fluorescence imaging. Current opinion in chemical biology. 2014;20:103-11.
[20] Ritort F. Single-molecule experiments in biological physics: methods and applications. Journal of Physics: Condensed Matter. 2006;18(32):R531.
[21] Sasmal DK, Pulido LE, Kasal S, Huang J. Single-molecule fluorescence resonance energy transfer in molecular biology. Nanoscale. 2016;8(48):19928-44.
[22] Pietraszewska‐Bogiel A, Gadella T. FRET microscopy: from principle to routine technology in cell biology. Journal of microscopy. 2011;241(2):111-8.
[23] Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP. Advanced fluorescence microscopy techniques—Frap, Flip, Flap, Fret and flim. Molecules. 2012;17(4):4047-132.
[24] Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Scientific reports. 2019;9(1):1-16.
[25] Fish KN. Total internal reflection fluorescence (TIRF) microscopy. Current protocols in cytometry. 2009;50(1):12.8. 1-.8. 3.
[26] Martin‐Fernandez M, Tynan C, Webb S. A ‘pocket guide’to total internal reflection fluorescence. Journal of microscopy. 2013;252(1):16-22.
[27] Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nature methods. 2008;5(6):507-16.
[28] Aitken CE, Marshall RA, Puglisi JD. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical journal. 2008;94(5):1826-35.
[29] McKinney SA, Joo C, Ha T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophysical journal. 2006;91(5):1941-51.