研究生: |
林郁樺 Lin, Yu-Hua |
---|---|
論文名稱: |
使用液相層析串聯式質譜尋找醣基轉移酶GALNT14的新穎受質之醣蛋白體學研究 Glycoproteome-wide Identifications of Novel GALNT14 Substrates Using Tandem Mass Spectrometry |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | GALNT14 、肝癌 、醣基化蛋白質 、凝集素親和性層析 、質譜 |
英文關鍵詞: | GALNT14, hepatocellular carcinoma, glycoprotein, lectin affinity chromatography, mass spectrometry |
DOI URL: | https://doi.org/10.6345/NTNU202202866 |
論文種類: | 學術論文 |
相關次數: | 點閱:109 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多肽氨端乙酰基半乳糖轉移酶14 (GALNT14)的基因型近幾年來被發現與許多癌症腫瘤的發生和其對治療後的反應相關。這些癌症種類包括肝癌、膽管癌、大腸癌、食道癌、神經母細胞瘤和乳癌。特別是從台灣900多例病患中發現GALNT14的基因型可作為預測肝癌化療療效反應的標記。然而,除了在癌細胞外緣負責傳遞凋亡訊號的死亡受體 (DR) 5外,我們並不清楚GALNT14的其他受質。於是,本研究的目標為,從醣蛋白體學的層面,透過凝集素親和性管柱再搭配高效能液相層析串聯式質譜儀 (HPLC-MS/MS) 來尋找出可能為GALNT14受質的醣基化蛋白質。首先,將GALNT14嵌入Huh7、J7和Mahlavu這三株人類肝癌細胞株內,使其穩定表達GALNT14,另外還有三株一樣的人類肝癌細胞株,但是並無嵌入GALNT14,作為對照組。接下來通過自製的凝集素親和性管柱純化出特定的醣基化蛋白質,其中凝集素是選用花生凝集素(PNA)與碗豆凝集素 (VVA)。使用胰蛋白酶將純化出的醣基化蛋白水解成生肽後進入高效能液相層析質譜儀分析。在結果中,扣除掉對照組重複鑑定到的蛋白質,三個細胞株搭配兩種凝集素,一共鑑定出305種醣基化蛋白質。我們發現這些醣基化蛋白質與核醣體這條路徑極為相關,其中許多蛋白質也清楚地顯示出與肝癌的相關性。因此本篇研究成功的進一步了解GALNT14與癌症的關聯,對未來要了解詳細致癌機制開啟了一個新視野。
The glycosyltransferase GALNT14 was recently shown to mediate the oncogenesis and treatment responses of multiple cancers, including hepatocellular carcinoma, cholangiocarcinoma, colon cancer, esophageal cancer, neuroblastoma and breast cancer. Particularly, the genotype of GALNT14 was tightly associated to the therapeutic response of hepatocellular carcinoma in an accumulation of more than 900 patients treated in Taiwan. However, the substrates of GALNT14 are not entirely known, except the death receptor (DR) 5 which mediates the extrinsic apoptosis signaling of cancer cells. We aim to investigate novel substrates of GALNT14 using a lectin enrich glycoproteome-wide screening method combined with high performance liquid chromatography – tandem mass spectrometry (HPLC-MS/MS). The GALNT14 genomic DNA was cloned to plasmids which were then transfected to the hepatocellular carcinoma cell line including Huh7, J7 and Mahlavu, for generating stable GALNT14 overexpression cell lines. Their corresponded control cell lines were also established with only the plasmid backbone without the GALNT14 DNA. Glycoproteins of the three cell lines were captured using self-made lectin affinity column, which was packed with Peanut Agglutin lectin (PNA) or Vicia Villosa Lectin (VVA). The captured proteins were following by trypsin digestion and high performance liquid chromatography – tandem mass spectrometric analyses. In summary, 305 glycoproteins were identified in GALNT14 overexpressed cells but not in the control cells. They are found to be involved in ribosome pathway and clearly shown to be associated with hepatocellular carcinoma. Therefore, this study successfully demonstrated the relation between GALNT14 and cancers, and could pave the way for a deeper understanding of carcinogenesis studies.
1. Bosch, F.X., et al., Primary liver cancer: worldwide incidence and trends. Gastroenterology, 2004. 127(5 Suppl 1): p. S5-S16.
2. Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300.
3. Mehta, A., H. Herrera, and T. Block, Glycosylation and liver cancer. Adv Cancer Res, 2015. 126: p. 257-79.
4. Poon, R.T., et al., Extended hepatic resection for hepatocellular carcinoma in patients with cirrhosis: is it justified? Ann Surg, 2002. 236(5): p. 602-11.
5. Llovet, J.M., J. Fuster, and J. Bruix, Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology, 1999. 30(6): p. 1434-40.
6. Kaido, T. and S. Uemoto, Recent evidence in the treatment of small hepatocellular carcinoma. Hepatogastroenterology, 2008. 55(85): p. 1460-2.
7. Haider, Z., et al., Median survival time of patients after transcatheter chemo-embolization for hepatocellular carcinoma. J Coll Physicians Surg Pak, 2006. 16(4): p. 265-9.
8. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. Lancet, 2003. 362(9399): p. 1907-17.
9. Bruix, J., M. Sherman, and A.A.f.t.S.o.L.D. Practice Guidelines Committee, Management of hepatocellular carcinoma. Hepatology, 2005. 42(5): p. 1208-36.
10. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
11. Wang, H., et al., Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun, 2003. 300(3): p. 738-44.
12. Bennett, E.P., et al., Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012. 22(6): p. 736-56.
13. Reis, C.A., et al., Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol, 2010. 63(4): p. 322-9.
14. Brockhausen, I., Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta, 1999. 1473(1): p. 67-95.
15. Liang, K.H., et al., GALNT14 genotype effectively predicts the therapeutic response in unresectable hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Pharmacogenomics, 2016. 17(4): p. 353-66.
16. Wagner, K.W., et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med, 2007. 13(9): p. 1070-7.
17. Barreiro, L.B., et al., Natural selection has driven population differentiation in modern humans. Nat Genet, 2008. 40(3): p. 340-5.
18. Wang, W.Y. and J.A. Todd, The usefulness of different density SNP maps for disease association studies of common variants. Hum Mol Genet, 2003. 12(23): p. 3145-9.
19. Liang, K.H., C.C. Lin, and C.T. Yeh, GALNT14 SNP as a potential predictor of response to combination chemotherapy using 5-FU, mitoxantrone and cisplatin in advanced HCC. Pharmacogenomics, 2011. 12(7): p. 1061-73.
20. Liang, K.H., P.C. Yang, and C.T. Yeh, Genotyping the GALNT14 gene by joint analysis of two linked single nucleotide polymorphisms using liver tissues for clinical and geographical comparisons. Oncol Lett, 2014. 8(5): p. 2215-2220.
21. Yeh, C.T., et al., A single nucleotide polymorphism on the GALNT14 gene as an effective predictor of response to chemotherapy in advanced hepatocellular carcinoma. Int J Cancer, 2014. 134(5): p. 1214-24.
22. Tsou, Y.K., et al., GALNT14 genotype as a response predictor for concurrent chemoradiotherapy in advanced esophageal squamous cell carcinoma. Oncotarget, 2017.
23. Benore, M., Response to review of Fundamental Laboratory Approaches for Biochemistry and Biotechnology. Biochem Mol Biol Educ, 2010. 38(2): p. 64.
24. West, I. and O. Goldring, Lectin affinity chromatography. Methods Mol Biol, 1996. 59: p. 177-85.
25. Merkle, R.K. and R.D. Cummings, Lectin affinity chromatography of glycopeptides. Methods Enzymol, 1987. 138: p. 232-59.
26. Loris, R., et al., The monosaccharide binding site of lentil lectin: an X-ray and molecular modelling study. Glycoconj J, 1994. 11(6): p. 507-17.
27. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
28. Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301.
29. Clegg, G.A. and M. Dole, Molecular beams of macroions. 3. Zein and polyvinylpyrrolidone. Biopolymers, 1971. 10(5): p. 821-6.
30. Winger, B.E., et al., Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry. J Am Soc Mass Spectrom, 1993. 4(7): p. 536-45.
31. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58.
32. Peng, J., et al., Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res, 2003. 2(1): p. 43-50.
33. Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem, 2000. 72(6): p. 1156-62.
34. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem, 1949. 22(3): p. 475.
35. Henzel, W.J., et al., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A, 1993. 90(11): p. 5011-5.
36. Eng, J.K., A.L. McCormack, and J.R. Yates, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom, 1994. 5(11): p. 976-89.
37. Lim, H., et al., Identification of 2D-gel proteins: a comparison of MALDI/TOF peptide mass mapping to mu LC-ESI tandem mass spectrometry. J Am Soc Mass Spectrom, 2003. 14(9): p. 957-70.
38. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
39. Wool, I.G., Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996. 21(5): p. 164-5.
40. Shenoy, N., et al., Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol, 2012. 5: p. 32.
41. Kowalczyk, P., M. Woszczynski, and J. Ostrowski, Increased expression of ribosomal protein S2 in liver tumors, posthepactomized livers, and proliferating hepatocytes in vitro. Acta Biochim Pol, 2002. 49(3): p. 615-24.
42. Kondoh, N., et al., Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma. Anticancer Res, 2001. 21(4A): p. 2429-33.
43. Kasai, H., et al., Differential expression of ribosomal proteins in human normal and neoplastic colorectum. J Histochem Cytochem, 2003. 51(5): p. 567-74.
44. Wang, M., Y. Hu, and M.E. Stearns, RPS2: a novel therapeutic target in prostate cancer. J Exp Clin Cancer Res, 2009. 28: p. 6.
45. Iwenofu, O.H., et al., Phospho-S6 ribosomal protein: a potential new predictive sarcoma marker for targeted mTOR therapy. Mod Pathol, 2008. 21(3): p. 231-7.
46. Pyronnet, S. and N. Sonenberg, Cell-cycle-dependent translational control. Curr Opin Genet Dev, 2001. 11(1): p. 13-8.
47. Silvera, D., S.C. Formenti, and R.J. Schneider, Translational control in cancer. Nat Rev Cancer, 2010. 10(4): p. 254-66.
48. Spilka, R., et al., Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett, 2013. 340(1): p. 9-21.
49. Bachmann, F., R. Banziger, and M.M. Burger, Cloning of a novel protein overexpressed in human mammary carcinoma. Cancer Res, 1997. 57(5): p. 988-94.
50. Dellas, A., et al., Expression of p150 in cervical neoplasia and its potential value in predicting survival. Cancer, 1998. 83(7): p. 1376-83.
51. Haybaeck, J., et al., Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res, 2010. 30(4): p. 1047-55.
52. Pincheira, R., Q. Chen, and J.T. Zhang, Identification of a 170-kDa protein over-expressed in lung cancers. Br J Cancer, 2001. 84(11): p. 1520-7.
53. Wang, H., et al., Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization. Clin Cancer Res, 2013. 19(11): p. 2850-60.
54. Huang, J.S., et al., Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun, 2004. 315(4): p. 950-8.
55. Bernardini, S., et al., Expression of co-factors (SMRT and Trip-1) for retinoic acid receptors in human neuroectodermal cell lines. Biochem Biophys Res Commun, 1997. 234(1): p. 278-82.
56. Wang, Y.W., et al., Overexpressed-eIF3I interacted and activated oncogenic Akt1 is a theranostic target in human hepatocellular carcinoma. Hepatology, 2013. 58(1): p. 239-50.
57. Shi, J., et al., Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene, 2006. 25(35): p. 4923-36.
58. Doldan, A., et al., Loss of the eukaryotic initiation factor 3f in pancreatic cancer. Mol Carcinog, 2008. 47(3): p. 235-44.
59. Doldan, A., et al., Loss of the eukaryotic initiation factor 3f in melanoma. Mol Carcinog, 2008. 47(10): p. 806-13.
60. Goh, S.H., et al., eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene, 2011. 30(4): p. 398-409.
61. Steentoft, C., et al., Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J, 2013. 32(10): p. 1478-88.