研究生: |
黃甄玲 |
---|---|
論文名稱: |
羧酸系分散劑的合成以及對水泥漿體性質的影響 |
指導教授: |
許貫中
Hsu, Kung-Chung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 羧酸系分散劑 、單體比例 、分子量 、側鏈 |
英文關鍵詞: | carboxylate-based dispersant, monomer ratio, molecular weight, side chain |
論文種類: | 學術論文 |
相關次數: | 點閱:250 下載:74 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文合成二種羧酸系共聚合物PCA(1)、PCA(2),作為水泥漿體的分散劑。PCA(1)、PCA(2)分別以單體PF1或PT1(具一邊側鏈)、PF2-Na(具二邊側鏈)與MAA經自由基聚合反應而得,並再由1H-NMR,IR、與UV光譜分析確認其結構;利用GPC測定共聚物的分子量。實驗過程中改變單體比例、起始劑或是鏈轉移劑濃度、反應溫度、以及側鏈長度而合成出不同的共聚物,探討共聚物的單體比例、分子量、與側鏈等因素對於水泥漿體(W / C = 0.3)之迷你坍度、迷你坍度維持的影響,並以分散劑對水泥顆粒之吸附行為解釋之。
研究結果顯示添加PCA(1)的水泥漿體之迷你坍度與迷你坍度維持都比添加PCA(2)者佳。添加的PCA(1)以短側鏈,PF1 : MAA = 4 : 1,且Mw = 1.3 × 104的效果為最佳。PCA(1)結構中含側鏈較長者,因側鏈過長發生架橋現象,造成水泥漿體粒子的凝聚,反而與水泥漿體的相容性較差。添加的PCA(2)以PF2-Na : MAA = 2 : 3且Mw = 2.6 × 104的效果最佳,但水泥漿體的迷你坍度維持仍不佳。PCA結構中含MAA比例愈高(>80%),在60 ~ 90分鐘時在水泥表面的吸附變化量愈大,則所形成水泥漿體流動性的維持愈佳。反之,如果PCA在初期就快速且大量吸附於水泥粒子者,水泥漿體的維持性便較差。
This thesis has synthesized two carboxylate-based copolymer ( PCA(1) and PCA(2) ) as a dispersant of cement pastes. PCA(1) was prepared from PF1 or PT1 which has one side chain, and MAA through a free radical polymerization. PCA(2) was prepared from PF2-Na which has two side chains, and MAA through a free radical polymerization. The structures of PCA(1) and PCA(2) were determined and confirmed by the 1H-NMR, IR, and UV spectra. The molecular weight of copolymers was determined through GPC measurements. Experimentally, PCAs with different monomer ratio, molecular weight, and side chain length, were prepared, and their effects on the mini-slump and mini-slump retention of cement pastes (water / cement = 0.3) were investigated. The results were explained by the adsorption behavior of PCA(1) and PCA(2) on cement particles.
It is indicated that PCA(1) has better the mini-slump and mini-slump retention of cement pastes than PCA(2). Cement pastes containing PCA(1) with short side chains, PF1 / MAA = 4 / 1, weight-average molecular weight (Mw) equal to 1.3 × 104, show the highest mini-slump and the best mini-slump retention. PCA(1) containing long side chains is less compatible with cement, because the polymer would bridge different cement particles, and cause cement pastes to become coagulated. Cement pastes containing PCA(2) with PF2-Na / MAA = 2 / 3, Mw = 2.6 × 104 show the highest mini-slump, but the mini-slump retention of cement pastes is not good. For PCA with more MAA content (>80%), a large portion of the polymer was adsorbed onto cement particles in 60~90 min. This enhances the mini-slump retention of the resulting cement pastes. When PCA was quickly adsorbed onto cement particles in large amount initially, mini-slump loss of cement pastes would occur.
Andersen, P. J., Roy, D. M., “The effect of superplasticizer molecular weight on its adsorption on, and dispersion of, cement”, Cement and Concrete Research, 18, 980 ~ 986, (1988).
Buekett, J., “International admixture standards”, Cement and Concrete Composites, 20, 137 ~ 140, (1998).
Chandra, S., Björnström, J., “Influence of cement and superplasticizer type and dosage on the fluidity of cement mortars--Part I”, Cement and Concrete Research, 32, 1605 ~ 1611, (2002).
Chandra, S., Björnström, J., “Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars--Part II”, Cement and Concrete Research, 32, 1613~1619, (2002).
Chang, D. Y., Chan, S. Y. N., Zhao, R. P., “The combined admixture of calcium lignosulphonate and sulphonated naphthalene formaldehyde condensates”, Construction and Building Meterials, 9, 205 ~ 209,(1995).
Chen, S. D., Hwang, C. H., Hsu, K. C., “The effects of sulphonated phenolic resins on the properties of concrete”, Cement and Concrete Research,29, 255 ~ 259, (1999).
Collepardi, “Admixture used to enhance placing characteristics of concrete”, Cement and Concrete Composites, 20, 103 ~ 112, (1998).
Hanehara, S., Yamada, K., “Interaction between cement and chemical admixture from the point of cement hydration, absorption behavior of admixture, and paste rheology”, Cement and Concrete Research, 29, 1159 ~ 1165, (1999).
Hommel, H., “Polymers at solid interfaces : A spin labeling approach”, Colloid and Interface Science, 54, 209 ~ 277, (1995).
Hsu, K. C., Chiu, J. J., Chen, S. D., Tseng, Y. C., “Effect of addition time of a superplasticizer on cement adsorption and on concrete workability”, Cement and Concrete Composites, 21, 425 ~ 430, (1999).
Jolicoeur, C., Simard, M. A., “Chemical admixture-cement interactions: phenomenology and physico-chemical concepts”, Cement and Concrete Composites, 20, 87 ~ 101, (1998).
Kim, B. G., Jiang, S., Jolicoeur, C., Aïtcin, P. C., “The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste”, Cement and Concrete Research, 30, 887 ~ 893, (2000).
Knaus, S., Bauer-Heim, B., “Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete”, Carbohydrate Polymers, 53, 383 ~ 394, (2003).
Lim, G. G., Hong, S. S., Kim, D. S., Lee, B. J., Rho, J. S., “Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant”, Cement and Concrete Research,29, 223 ~ 229, (1999).
Mehta, P. K., Monteiro, P. J. M., “Concrete Structure, Properties , and Materials”, (2nd ed.), Prentice Hall International Series, (1993).
Mollah, M. Y. A., Palta, P., Hess, T. R., Vempati, R. K., Cocke, D. L., “Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of Portland cement and solidification/stabilization consequences”, Cement and Concrete Research, 25, 671 ~ 682, (1995).
Nmai, C. K., “Cold weather concreting admixtures”, Cement and Concrete Composites, 20, 121 ~128, (1998).
Ohama, Y., “Polymer-based admixtures”, Cement and Concrete Composites, 20, 189 ~ 212, (1998).
Otsubo, Y., “Rheological behavior of suspensions flocculated by weak bridging of polymer coils”, Journal of Colloid and Interface Science, 215, 99 ~ 105, (1999)
Pei, M., Wang, D., Hu, X., Xu, D., “Synthesis of sodium sulfanilate-phenol-formaldehyde condensate and its application as a superplasticizer in concrete”, Cement and Concrete Research, 30, 1841 ~ 1845, (2000).
Silverstein, R. M., Webster, F. X., “Spectrometric Identification of Organic Compounds”, (6th ed.), John Wiley & Sons,Inc. NY, (1998).
Skoog, D. A., Holler, F. J., Nieman, T. A., “Principles of instrumental analysis”, (5th ed.),Saunders Golden Sunburst Series, (1998).
Soroka, I., Ravina, D., “Hot weather concreting with admixtures”, Cement and Concrete Composites, 29, 129 ~ 136, (1998).
Uchikawa, H., Hanehara, S., Sawaki, D., “The role of steric repulsive forces in paste prepared with organic admixture”, Cement and Concrete Research, 27, 37 ~ 50, (1997).
Yamada, K., Takahashi, T., Hanehara, S., Matsuhisa, M., “Effects of the chemical structure on the properties of polycarboxylate type superplasticizer”, Cement and Concrete Research, 30, 197 ~ 203, (2000).
Yoshioka, K., Tazawa, E., Kawai, K., Enohata, T., “Adsorption characteristics of superplasticizers on cement component minerals”, Cement and Concrete Research, 32, 1507 ~ 1513, (2002).
江舜元,“化學摻料基本性質的分析及對水泥水化作用之影響”, 國立台灣師範大學化學研究所碩士論文,25 ~ 34, (1996).
李育德,顏文義,莊祖煌, “聚合物物性”, 高立圖書有限公司, 54 ~ 61, (1997).
李明同,鄭世江, “混凝土化學摻料性質與運用技術(一)”, 現代營建月刊, 24, 290,11 ~ 12, (2004).
杜逸虹, “聚合體學”, 三民書局, 16 ~ 248, (1974).
胡建華,汪長春,楊武利,府壽寬,陳博學,成克錦, “聚羧酸系高效減水劑的合成與分散機理研究”, 復旦學報, 39, 4, 463 ~466, (2000).
陳秀娘, “石油工業廢觸媒的波索蘭活性評估與改質磺化酚醛樹脂之合成”, 國立台灣師範大學化學研究所碩士論文,33 ~ 34, (2002).
陳聖達, “化學摻料對混凝土材料性質的影響”, 國立台灣師範大學化學研究所碩士論文, 13 ~ 28, (1997).
陳慶宏, “強塑劑於高性能混凝土中之效能評估”, 國立台灣師範大學化學研究所碩士論文, 60 ~ 63, (2000).
黃兆龍, “混凝土性質與行為”, 詹氏書局, 173 ~ 211, (1997)
黃宏隆, “新型聚羧酸系強塑劑對含飛灰水泥漿體流動行為的影響”, 國立台灣師範大學化學研究所碩士論文,18 ~ 50, (2003).
傅進興, “不同帶電性之單體及其縮合體對碳粒子之分散效果”, 國立成功大學化學工程研究所碩士論文, 6 ~ 10, (1994).
葉一賢, “新型聚羧酸系強塑劑的合成與應用”, 國立台灣師範大學化學研究所碩士論文, 65 ~ 70, (2002).
蔡信行,楊靜儀,葉德惠,陳進隆,“聚合物化學”,新文京開發出版有限公司, 148 ~ 149, (2002).
薛敬和, “高分子化學”,高立圖書有限公司, 387 ~ 497, (2000).
龔人俠, “水泥化學概論”, 台灣區水泥工業同業公會, 85 ~ 102, (1977).
鶴田禎二, “高分子合成反應”, 高立圖書有限公司, 72 ~ 73, (2001).