簡易檢索 / 詳目顯示

研究生: 曾軍豪
Chung-Hao Tzeng
論文名稱: 直接成長奈米碳管於導體上做為鋰離子電池陽極的電化學研究
Directly Growth of Carbon Nanotubes on Current Collector as the Anode of Lithium-ion Battery
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 45
中文關鍵詞: 鋰電池陽極材料碳材
英文關鍵詞: Lithium-ion battery, cardon material, impedance
論文種類: 學術論文
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鋰電池的材料研究中所要克服的困難大多是以呈現更高電容量或是更穩定的工作環境兩方面來加以改良,而本實驗室所採用的材料為直接成長奈米碳管於導體上作為鋰電池的陽極。
    而在鋰電池操作過程中,電極與電解液中間會形成鈍化層(solid electrolyte interface, 簡稱SEI) ,由於鈍化層是電池中內電阻最主要的來源,故一直是被主要探討的目標,本文將用電化學阻抗頻譜法(Electrochemical Impedance Spectroscopy, 簡稱EIS)來探討碳管成長時候加入氮氣對於鈍化層的影響,而將譜圖以簡單的電阻電容電路圖(equivalent-circuit model, 簡稱ECM)模擬也可由電容(capacitance)值計算出鈍化層的厚度。
    從碳管當陽極所組成鋰電池所做的測試中,有加入氮氣成長的碳管的電極在第一次放電過程,電容量高達979.66 mAh/g,而在第二圈可逆電容量可維持原來的54%,其內電阻於充放電20圈後內電阻為50~60歐姆面積單位(Ω× ㎝2) ,相較於未加入氮氣成長的碳管的100~150歐姆面積單位(Ω× ㎝2)內電阻還要低很多,而由簡單的平行電路板公式中也可算出前者的鈍化層厚度將近260nm,後者為450nm,由此可更進一步確定碳管加入氮氣的優點。

    In the material research of the lithium battery, the higher capacity and the more stable work environment are important issues. In my laboratory, I grow carbon nanotubes (CNTs) directly on current collector as the anode of the lithium battery.
    During the charging/discharging process of the lithium battery, the passive film or the solid electrolyte interface (SEI) formed on the electrode surface give a large resistance. In this study, I also use Electrochemical Impedance Spectroscopy (EIS) to know the influence of the CNTs with/without nitrogen. By using equivalent-circuit model, the thickness of SEI can also be calculated from the value of capacitance part.
    In this results, the 1st discharging capacity of the battery of CNTs with nitrogen is 979.66 mAh/g and during the 2nd cycle, the efficiency is 54%. The resistance is 50~60 ohms×cm2 after charging/discharging 20 cycles and the resistance of the battery of CNTs without nitrogen is 100~150 ohms×cm2. The SEI thickness of the former is 260 nm, and the latter is 450 nm.

    目錄 中文摘要 …………………………………………………………… Ⅰ 英文摘要 …………………………………………………………… Ⅱ 誌謝 ………………………………………………………………… Ⅲ 目錄 ………………………………………………………………… Ⅳ 表目錄 ……………………………………………………………… Ⅵ 圖目錄 ……………………………………………………………… Ⅶ 第一章 簡介 ………………………………………………………… 1 1.1. 鋰離子電池概論 …………………………………………… 1 1.2. 陽極材料 ………………………………………………… 2 1.3. 電解液 …………………………………………………… 7 1.3.1 Propylene Carbonate (PC) ……………………… 8 1.3.2 Ethylene Carbonate (EC) ………………………… 9 1.3.3 Linear Carbonates …………………………………10 1.4. 陰極材料…………………………………………………… 10 第二章 實驗 ……………………………………………………… 12 2.1. 奈米碳管電極製備與硬幣型電池的組裝 ……………… 12 2.2. 實驗分析設備 …………………………………………… 18 2.2.1 掃描式電子顯微鏡………………………………… 18 2.2.2 拉曼光譜儀………………………………………… 18 2.2.3 X光繞射儀……………………………………………18 2.2.4 表面積測試………………………………………… 19 2.2.5 充放電測試………………………………………… 21 2.2.6 循環伏安法………………………………………… 21 2.2.7 交流阻抗分析……………………………………… 21 第三章 結果與討論………………………………………………… 25 3.1 碳材電極的材料分析…………………………………………… 25 3.1.1 碳極的型態分析(FE-SEM)……………………………… 25 3.1.2 碳極的結構分析(Raman)…………………………………27 3.1.3 碳極的結構分析(XRD)……………………………………29 3.1.4 碳極的表面積測量(BET)…………………………………29 3.2 碳極的電化學分析……………………………………………… 31 3.2.1 充放電測試 (Charging-Discharging test)………… 31 3.2.2 循環伏安測試 (Cyclic Voltammetry measurement)… 34 3.2.3 交流阻抗分析圖譜 (a.c. impedance spectra) ……… 38 第四章 結論 ……………………………………………………… 44 參考文獻……………………………………………………………… 45

    參考文獻
    [1]Martin Winter, Jürgen O. Besenhard, Michael E. Spahr, and Petr Novák, “Insertion Electrode Materials for Rechargeable Lithium Batteries”, Adv. Mater., 10(10), P 725, (1998)
    [2]J.O. Besenhard, J. Yang, M. Winter, “Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?”, J. Power Sources, 68-69, P87, (1997)
    [3]陳金銘,“高容量碳粉材料”, 工業材料, 133, 85, (1997).
    [4]S.Yata et al., Abstract of 34th Battery Symposium, Japan, P63 (1993).
    [5]K. Sato, M. Noguchi, A. Demachi, N. Oki and M. Endo, “A Mechanism of Lithium Storage in Disordered Carbons”, Science, 264, P556, (1994).
    [6]J. S. Xue and J. R. Dahn, “Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made form Epoxy Resins”, J. Electrochem. Soc., 142, P3668, (1995).
    [7]Y. Wu, S. Fang and Y. Jiang, “Carbon Anodes for a Lithium Secondary Battery Based on Polyacrylonitrile”, J. Power Sources, 75, P201, (1998).
    [8]K. Tanaka, K. Okahara, M. Okada, and T. Yamabe, “Electronic-properties of bucky-tube model”, Chem. Phys. Lett., 191, P469, (1992).
    [9]T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, and T. Thio, ”Electrical conductivity of individual carbon nanotubes”, Nature, 382, P54. (1996)
    [10]J.W.G. Wilboerm, L.C. Vevema, A.G. Rinzler, R.E. Smalley, and C. Dekker, ”Electronic structure of atomically resolved carbon nanotubes”, Nature, 391, P59. (1998)
    [11]Z.H. Yang, Y.H. Zhou, S.B. Sang, Y. Feng, and H.Q. Wu, ”Lithium insertion into multi-walled raw carbon nanotubes pre-doped with lithium”,Materials Chemistry and Physics, 89, P295, (2005)
    [12]G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He, and W.Z. Li, ”Structure and Lithium Insertion Properties of Carbon Nanotubes”, J. Electrochem. Soc., 146(5), P 1696, (1999)
    [13]A.S. Claye, J.E. Fischer, C.B. Hu.man, A.G. Rinzler, and R.E. Smalley, ”Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System”, J. Electrochem. Soc., 147(8), P2845, (2000)
    [14]B. Gao, C. Bower, J.D. Lorentzen, L. Fleming, A. Kleinhammes, X.P. Tang, L.E. Mcnei, Y. Wu, and O. Zhou, Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes”, Chem. Phys. Lett, 327(1-2),P69. (2000)
    [15]C.H. Mi, G.S. Cao, and X.B. Zhao, ”A non-GIC mechanism of lithium storage in chemical etched MWNTs”, Journal of Electroanalytical Chemistry, 562, P217, (2004)
    [16]Z.H. Yang, H.Q. Wu, and B. Simard, “Charge–discharge characteristics of raw acid-oxidized carbon nanotubes”, Electrochem. Commun., 4, P574. (2002)
    [17]M.Winter, J. O. Besenhard: in Handbook of Battery Materials, J. O. Besenhard, Ed. Wiley-VCH, Weinheim, P 383. (1999)
    [18]M. Dolle’, et al., “In situ TEM study of the interface carbon/electrolyte” , J. Power Sources, 97~98, P 104. (2001)
    [19]Kang Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries”, Chem. Rev. , 104 (10), P 4303 (2004)
    [20]Harris, W. S. Electrochemical Studies in Cyclic Esters. Ph.D. Thesis, University of California, Berkeley, CA, 1958
    [21]Elliott, W. Report No. 1, Contract NAS 3-6015 (N 65-11518), Sept 1964
    [22]Pistoia, G.; De Rossi, M.; Scrosati, B. J. Electrochem. Soc., 117, P500 (1970)
    [23]Abraham, K. M.; Foos, J. S.; Goldman, J. L., ”Long Cycle-Life Secondary Lithium Cells Utilizing Tetrahydrofuran”, J. Electrochem. Soc., 131, P 2197 (1984)
    [24]Geronov, Y.; Puresheva, B.; Moshtev, R. V.; Zlatilova, P.; Kosev, T.; Staynov, Z.; Pistoia, G.; Pasquali, M., ”Electrolytic Regeneration of the Neodymium Oxide Reduction-Spent Salt”, J. Electrochem. Soc., 137, 3338,(1990)
    [25]Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C. K.; Halpert, G., ”Advances in ambient temperature secondary lithium cells”, J. Power Sources, 29, P579,(1990)
    [26]Takami, N.; Ohsaki, T.; Inada, K., ”The Impedance of Lithium Electrodes in LiPF6-Based Electrolytes”, J. Electrochem. Soc. 1992, 139, P 1849.
    [27]Arakawa, M.; Tobishima, S.; Hirai, T.; Yamaki, J., ”Ethylene Carbonate/2-Methyltetrahydrofuran Electrolyte for Li/Amorphous V2O5-P2O Secondary Batteries”, J. Electrochem. Soc., 133, P1527.
    [28]Surampudi, S.; Shen, D. H.; Huang, C. K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E., ”Effect of cycling on the lithium/electrolyte interface in organic electrolytes”, J. Power Sources, 43/44, P21, (1993)
    [29]Tobishima, S.; Arakawa, M.; Hirai, T.; Yamaki, J., ”Ethylene carbonate-based electrolytes for rechargeable lithium batteries”, J. Power Sources, 26, P 449.(1989)
    [30]McMillan, R. S.; Juskow, M. W., ”A Report on the Development of a Rechargeable Lithium Cell for Application in Autofocus Cameras”, J. Electrochem. Soc., 138, P 1566(1991)
    [31]Guyomard, D.; Tarascon, J. M., ”Rechargeable Li1+xMn2O4/Carbon Cells with a New Electrolyte Composition”, J. Electrochem. Soc., 140, P 3071.(1993)
    [32]Arascon, J. M.; Guyomard, D., ”New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells”, Solid State Ionics, 69, P 293(1994)
    [33]游文雄, 鋰離子電池混合金屬氧化物陰極材料之電化學特性分析, 碩士論文, 國立中央大學, 中華民國台灣 (2000).
    [34]N. R. Avery and K. J. Black, ”Kinetic analysis of capacity fade in lithium/coke half-cells”, J. Power Sources, 68, P 191, (1997)
    [35]D. Aurbach and A. Zaban, ”Impedance spectroscopy of lithium electrodes : Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency”, J. Electroanal. Chem. 348 P 155. (1993)
    [36]D. Aurbach and A. Zaban, ”Impedance spectroscope of lithium electrodes : Part 2. The behaviour in propylene carbonate solutions — the significance of the data obtained”, J. Electroanal. Chem. 367 P 15. (1994)
    [37]C.R. YANG, J.Y. SONG, Y.Y. WANG* and C.C. WAN, “Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries”, Journal of Applied Electrochemistry, 30, P29, ( 2000)

    無法下載圖示
    QR CODE