研究生: |
楊淑媚 Yang, Shu-Mei |
---|---|
論文名稱: |
一、 經由兩次 Michael 及縮醛化連續性反應合成出具有高化學及立體選擇性之雙環橋形 [3.3.1] 九員環骨架化合物
二、 製備新穎的 Wittig 試劑以合成多官能基取代的烯類化合物 I. Highly Chemo- and Diastereoselective Synthesis of Bicylo[3.3.1] nonane Scaffolds via Michael-Michael-Acetalization Cascade Reaction II. Synthesis of Multi-Functional Alkene via Wittig Reaction with a New-Type of Phosphorus Ylide |
指導教授: |
林文偉
Lin, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 178 |
中文關鍵詞: | 有機不對稱反應 、多官能基烯類化合物 、Wittig 反應 |
英文關鍵詞: | Organocatalysis, multi-functional alkenes,, Wittig reaction |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究分為兩大部分:
第一部份:α,β-不飽和雙酮化合物 79 作為親核性試劑,與 1,3-茚二酮反應,以 Michael-Michael-acetalization 反應建構雙環橋形 [3.3.1] 九員環骨架化合物。
第二部分:製備新穎的 Wittig 試劑以合成多官能基取代的烯類化合物
第一部分,經由 α,β-不飽和雙酮化合物 79 和 1,3-茚二酮的有機不對稱反應,建構具有四級碳的多取代雙環橋形 [3.3.1] 九員環骨架化合物 81 ,此反應的單一鏡像異構物,產率為 10-84%,鏡像超越值可高達 85%。
(產物尚未解出絕對立體組態,先以相對立體結構表示)
第二部分,利用活性烯類與三丁基膦合成新穎的 Wittig 試劑後,與 Michael 受質 131 及醛類分子 132 反應,經由高立體選擇性之 Wittig 反應合成出具有多取代烯類產物 133,產率為 43-92%。
This thesis is divided into two parts:
Part 1. Synthesis of bicyclo[3.3.1]nonane derivatives via organocatalytic asymmetric double Michaal-acetalization reaction with α,β-unsaturated 1,3-diketones and 1,3-indandiones
Part 2. Synthesis of multi-functional alkenes via Wittig Reaction with a new-type of phosphorus ylide
In the first part, a series of novel bicyclo[3.3.1]nonane derivatives with a quaternary stereocenter were synthesized via organocatalytic asymmetric double Michael-acetalization reaction of α,β-unsaturated 1,3-diketones 79 and 1,3-indandiones 80.
In the second part, we have developed a new type of Wittig reagent from PBu3 and Michael acceptors 131, which could be utilized in the Wittig reaction with a variety of aldehydes 132 to synthesize multi-functional alkenes 133 with excellent stereo-selectivity.
1. Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis, Wiley: New York, 1989.
2. Wurtz, F. Ann. Chim. Phys. 1855, 44, 275.
3. Chao, C.-S.; Chen, J.-H.; Hsu, J.-H.; Tsai, J.-H.; Chen, K. Chemistry (The Chinese Chem. Soc. Taipei) 2004, 62, 239.
4. Boyd, D. B. J. Mol. Struct. 1997, 401, 227-234.
5. Lugovskoy, A. A.; Degterev, A. I.; Fahmy, A. F.; Zhou, P.; Gross, J. D.; Yuan, J. and Wagner, G. J. Am. Chem. Soc. 2002, 124, 1234.
6. Soltero-Higgin, M.; Carlson, E. E.; Phillips, J. H. and Kiessling, L. L. J. Am. Chem. Soc. 2004, 126, 10532.
7. Carlson, E. E.; May, J. F. and Kiessling, L. L. Chem. Biol. 2006, 13, 825.
8. a) Yu, F.; Hu, H.; Gu, X.; Ye, J. J. Org. Lett. 2012, 14, 2038-2041. b) Wu, W.; Huang, H.; Yuan, X.; Zhu, K.; Ye, J. Chem. Commun. 2012, 48, 9180-9182. c) Zhu, K.; Huang, H.; Wu, W.; Wei, Y.; Ye, J. Chem. Commun. 2013, 49, 2157-2159. d) Zhang, H.; Wang, B.; Cui, L.; Li, Y.; Qu, J.; Song, Y. Org. Biomol. Chem. 2014, 12, 9097.
9. Berkessel, A.; Gröger, H. Asymmetric Organocatalysis, Wiley: New York, 2005.
10. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395-2396.
11. List, B. Tetrahedron 2002, 58, 5573-5590.
12. MacMillan, D.W.C. Nature, 2008.
13. Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703-4832.
14. a) Song, C. E. Cinchona Alkaloids in Synthesis and Catalysis, Wiley: New York, 2009, pp. 1-10. b) Bredig, G.; Fiske, P. S. Biochem. 1912, 46, 7-23. c) Pracejus, H. Justus Liebigs Ann. Chem. 1960, 634, 9-22. d) Connon, S. J. Chem. Commun. 2008, 2499-2510. e) Melchiorre, P. Angew. Chem. Int. Ed. 2013, 51, 9748-9770.
15. Hotta, K.; Chen, X.; Paton, R. S.; Minami, A.; Li, H.; Swaminathan, K.; Mathews, I.; Watanabe, K.; Oikawa, H.; Houk, K. N.; Kim, C.-Y. Nature 2012, 483, 355.
16. Angella, Y. W. H. An isoxazole approach to the coleophomones, 2007.
17. a) Narjes, F.; Crescenzi, B.; Ferrara, M.; Habermann, J.; Colarusso, S.; Ferreira, M. R. b) R.; Stansfield, I.; Mackay, A. C.; Conte, I.; Ercolani, C.; Zaramella, S.; Palumbi, c) M-C.; Meuleman, P.; Leroux-Roels, G.; Giuliano, C.; Fiore, F.; Marco, S. D.; d) Baiocco, P.; Koch, U.; Migliaccio, G.; Altamura, S.; Laufer, R.; Francesco, R. D.; e) Rowley, M. J. Med. Chem. 2011, 54, 289
18. Ransborg, L. K.; Overgaard, M.; Hejmanowska, J.; Barfüsser, S.; Jørgensen, K. A.; Albrecht, Ł. Org. Lett. 2014, 16, 4182.
19. Jeyachandran, M.; Ramesh, P. Org. Chem. Int. 2011, 5.
20. Barbas Iii, C. F.; Ramachary, D. B.; Chowdari, N. S. Synlett 2003, 1910.
21. Ren, Z.; Cao, W.; Tong, W.; Chen, J.; Deng, H.; Wu, D. Synth. Commun. 2008, 38, 2200.
22. Akbarzadeh, R.; Amanpour, T.; Khavasi, H. R.; Bazgir, A. Tetrahedron 2012, 68, 3868-3874.
23. Hu, F.; Wei, Y.; Shi, M. Tetrahedron 2012, 68, 7911-7919.
24. Zhu, Q.; Lu, Y. Angew. Chem. Int. Ed. 2010, 49, 7753-7756.
25. a)Amagata, T.; Minoura, K.; Numata, A. J. Nat. Prod., 2006, 69 , 1384 b)Amagata, T.; Tanaka, M.; Yamada, T.; Minoura, K. A. Numata. J. Nat. Prod., 2008, 71, 340.
26. Rodeschini, V.; Ahmad, N. M.; Simpkins, N. S. Org. Lett. 2006, 8, 5283.
27. Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Wilson, C. Org. Biomol. Chem. 2007, 5, 1924.
28. Wang, X.-J.; Zhao, Y.; Liu, J. T. Synthesis 2008, 3967.
29. Wender, P. A.; D’Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto, E. E.;
Kowalski, J. A.; McKendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender, D. Org. Lett. 2007, 9, 1829.
30. Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.
31. Morita, H.; Kobayashi, J. J. Org. Chem. 2002, 5378.
32. Maiti, A.; Gerken, J. B.; Masjedizadeh, M. R.; Mimieux, Y. S.; Little, R. D. J. Org. Chem. 2004, 69, 8574.
33. Muthusamy, S.; Srinivsan, P. Tetrahedron 2009, 65, 1567.
34. Srinivas, V.; Koketsu, M. J. Org. Chem. 2013, 78, 11612.
35. Lefranc, A.; Gremaud, L.; Alexakis, A. Org. Lett. 2014, 16, 5242.
36. Ransborg, L. K.; Overgaard, M.; Hejmanowska, J.; Barfüsser, S.; Jørgensen, K. A.; Albrecht, Ł. Org. Lett. 2014, 16, 4182.
37. Surh, Y. J. Nat. Rev. Cancer, 2003, 3, 768-780.
38. Sharma, C.; Kaur, J.; Shishodia, S.; Aggarwal, B.B.; Ralhan, R. Toxicology, 2006, 228, 1-15.
39. Zhu, Q. and Lu, Y. Angew. Chem. Int. Ed. 2010, 49, 7753-7756.
40. 參考本實驗室陳玉珊學姊的論文