簡易檢索 / 詳目顯示

研究生: 張佑瑋
Chang, Yu-Wei
論文名稱: 硫辛酸影響小鼠腦微膠細胞株BV-2對寡聚態乙型類澱粉樣蛋白吞噬作用之研究
Effect of α-lipoic acid on phagocytosis of oligomeric beta-amyloid1-42 into BV-2 mouse microglia cells
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 微膠細胞寡聚態類澱粉樣蛋白硫辛酸
英文關鍵詞: microglia, oAβ1-42, α-lipoic acid
論文種類: 學術論文
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討維生素B群、硫辛酸與牛磺酸等對小鼠腦微膠細胞株(microglia) BV-2吞噬及清除寡聚態類澱粉樣蛋白(oligomeric beta-amyloid, oAβ1-42)之影響,評估這些營養素是否能藉由降低過多的oAβ1-42堆積以延緩阿茲海默氏症之進展。
    實驗首先建立體外小鼠微膠細胞株BV-2攝入oAβ1-42之細胞模式。將Aβ1-42粉末溶於F12 medium中24小時進行聚集反應以製備oAβ1-42。穿透式電子顯微鏡(transmission electron microscopy, TEM)型態觀察顯示所製備的oAβ1-42為聚集型球狀構造;以分析型超高速離心機(analytical ultracentrifugation, AUC)進行沉降係數分析,結果顯示製備的oAβ1-42分子量大多介於100-300 kDa之間。在細胞實驗方面,MTT分析結果發現,在0.1 mM的樣品濃度下測試樣品thiamin、riboflavin、nicotinamide、pyridoxine、cobalamin、folic acid、taurine、α-lipoic acid (ALA)對BV-2細胞皆無明顯之毒性產生。接著,以此樣品濃度處理經1 μM螢光分子標定的oAβ1-42 (FAM-oAβ1-42) 共培養24小時之小鼠微膠細胞株BV-2以進行攝入試驗,結果發現,在所有樣品中以ALA對BV-2細胞具有最佳的促進攝入FAM-oAβ1-42之效果。進一步以real-time PCR對microglia細胞表面上與oAβ吞噬作用相關之接受器(receptor),包括scavenger receptor A1 (SR-A1)、scavenger receptor B1 (SR-B1)、CD36、receptor for advanced glycation end-products (RAGE)之基因表現進行分析。結果發現,與 oAβ1-42共同培養的BV-2細胞其CD36基因表現會隨著ALA處理濃度增加而升高,然而其他接受器則無;再則,以ALA處理未與oAβ1-42共同培養的BV-2細胞時也觀察到其CD36基因的表現有上升之情形。免疫細胞染色法(immunocytochemistry, ICC)結果顯示,無論是否與oAβ1-42共同培養,ALA的處理均會增加BV-2細胞CD36接受器之表現量,但添加CD36接受器阻斷劑(CD36抗體)則會顯著地減少ALA提升BV-2細胞對FAM-oAβ1-42之攝入能力。ICC分析結果亦發現,ALA處理會增加BV-2細胞中CD36的轉錄因子PPAR-γ (peroxisome proliferator-activated receptor-γ)之轉位作用(translocation)。Enzyme-linked immunosorbent assay (ELISA)分析發現,ALA處理會增加BV-2細胞對15-deoxy-△12,14- prostaglandin J2的產生。Real-time PCR以及western blotting分析結果發現,經ALA處理的BV-2細胞其COX-2基因與蛋白質之表現均有明顯增加之趨勢。根據上述結果,我們推測ALA可能是透過COX-2/15-deoxy-△12,14-prostaglandin J2/PPAR-γ/CD36路徑,提升BV-2細胞膜上CD36接受器之表現、增加其對oAβ1-42進行辨識,進而促進對oAβ1-42之吞噬作用。

    The aim of this study is to investigate the effect of vitamin B complex (including thiamin, riboflavin, nicotinamide, pyridoxine, cobalamin, folic acid), vitamin-like α-lipoic acid (ALA), and taurine on enhancing phagocytosis of oAβ1-42 in BV-2 mouse microglia cells.
    An in vitro model was established to investigate phagocytosis of oAβ1-42 in BV-2 mouse microglia cells. The image of transmission electron microscopy (TEM) indicated that the morphology of prepared oAβ1-42 was spherical particles. In addition, the data from analytical ultracentrifugation (AUC) showed that Aβ1-42 assembled by themselves to form oligomers with molecular size of 100-300 kDa principally. The MTT test revealed non-cytotoxicity of all tested compounds at concentration up to 100 μM on BV-2 cells. The BV-2 microglia cells were incubated with 1 μM 5(6)-carboxyfluorescein-labeled oAβ1-42 (FAM-oAβ1-42) for 24 h followed by flow cytometer analysis to assess the in vitro phagocytosis ability of oAβ1-42. The results showed that ALA exhibits the highest enhancing effect on phagocytosis of FAM-oAβ1-42 in BV-2 mouse microglia cells among all tested samples. Furthermore, the mRNA expressions of oAβ1-42 phagocytosis-related receptors of microglia were analyzed by real-time PCR for elucidating the phagocytosis mechanisms, and the results indicated that ALA significantly increases the mRNA expression of CD36 receptor in BV-2 cells. However, no significant difference was observed for other tested receptors, including scavenger receptor A1, scavenger receptor B1, and the receptor for advanced glycation end-products (RAGE). Interestingly, when treated with ALA alone, CD36 mRNA expression also increased in BV-2 cells even though without oAβ1-42 stimulation. The immunocytochemistry (ICC) analysis showed that ALA significantly elevated CD36 protein expression in BV-2 cells whether with or without oAβ1-42 treatment. Moreover, the results from flow cytometry analysis indicated CD36 receptor blocking antibody, the CD36 receptor inhibitor, significantly attenuated ALA-promoted phagocytosis of FAM-oAβ1-42 in BV-2 cells. The ICC analysis revealed that ALA caused translocation of PPAR-γ, which was known to regulate expression of CD36 mRNA, in BV-2 cells obviously. The real-time PCR and western blotting also revealed that ALA elevated both mRNA and protein expression of cyclooxygenase-2 (COX-2), a key enzyme that involved in the synthesis process of 15-deoxy-△12,14- prostaglandin J2, in BV-2 mouse micrgolia cells. Conclusively, we postulated that ALA enhances oAβ1-42 phagocytosis via up-regulation of COX-2/15-deoxy-△12,14-prostaglandin J2/PPAR-γ/CD36 pathway in BV-2 cells.

    第一章 前言 1 第二章 文獻回顧 3 1.阿茲海默氏症 3 1.1阿茲海默氏症之病因 3 1.1.1類澱粉樣蛋白假說 3 1.1.1.1類澱粉樣蛋白產生之機制 3 1.1.1.2類澱粉樣蛋白清除之機制 5 1.1.1.3類澱粉樣蛋白造成神經元死亡之機制 6 1.1.1.4類澱粉樣蛋白的聚集與造成阿茲海默氏症之關鍵形態 15 1.1.1.5總結amyloid cascade hypothesis 15 1.1.2 Tau假說 19 1.1.3 膽鹼性假說 19 1.1.4 其他假說 20 1.2 與阿茲海默氏症相關之危險因子 24 1.3 阿茲海默氏症之診斷 25 1.4 阿茲海默氏症之治療 29 2. 微膠細胞 31 2.1 Microglia在AD進展中所扮演的角色 32 2.1.1 Microglia可清除腦部累積的Aβ 32 2.1.1.1 Microglia透過phagocytosis的過程攝入Aβ 32 2.1.1.2 Microglia釋放Aβ降解酵素分解腦部累積的Aβ 32 2.1.2 調控Microglia的功能與AD之進展 33 3. 實驗用樣品之介紹 35 3.1維生素B群 35 3.1.1 Thiamin 35 3.1.2 Riboflavin 36 3.1.3 Nicotinamide 36 3.1.4 Pyridoxine 36 3.1.5 Folic acid 37 3.1.6 Cobalamin 37 3.2 α-lipoic acid 38 3.3 Taurine 38 4. COX-2/15-deoxy-△12,14-prostaglandinJ2/PPAR-γ/CD36路徑介紹 40 第三章 研究動機與目的及實驗架構 45 第四章 實驗材料與方法 47 1.實驗材料來源 47 2.實驗溶液配製 50 2.1 細胞培養液(medium) 50 2.2 Phosphate-buffer saline (PBS) 50 2.3 MTT stock 50 2.4 oligomeric Aβ1-42和fibrillary Aβ1-42之製備 50 2.5 實驗樣品配置 51 2.6 Primer溶液之配製 51 3.實驗方法 52 3.1 細胞培養 52 3.2 細胞繼代 52 3.3 細胞凍管儲存 52 3.4 細胞凍管解凍 52 3.5 細胞處理 53 3.6 NO產生量之偵測 53 3.7 oligomeric Aβ1-42聚集型態之鑑定 53 3.8 MTT分析法 54 3.9 oAβ1-42攝入分析及定量 55 3.10 Real-time PCR 55 3.11 西方墨點法 58 3.12 免疫細胞染色法 59 3.13 15-deoxy-△12,14- prostaglandin J2 ELIZA 59 4.統計分析 60 第五章 結果 61 1. BV-2細胞型態觀察及其經LPS刺激後發炎因子分析 61 2. Oligomeric Aβ1-42聚集型態之鑑定 61 3. 維生素B群、α-lipoic acid、Taurine對小鼠微膠細胞株BV-2細胞毒性之探討 62 4. BV-2細胞攝取oAβ1-42模式之建立 63 5. 評估樣品調控BV-2細胞攝入oAβ1-42之能力 64 6. α-lipoic acid增加BV-2細胞攝入oAβ1-42 65 7. α-lipoic acid(ALA)可能透過增加CD36的表現而非SR-A1、SR-B1、RAGE來增加對oAβ1-42的攝取 65 8. α-lipoic acid (ALA)促使BV-2細胞之PPAR-γ轉位作用 66 9. α-lipoic acid (ALA)可能透過COX-2/15-deoxy-△12,14-PGJ2進而造成PPAR-γ轉位作用 67 第六章 討論 83 1. BV-2細胞型態及其性狀之鑑定 83 2. Oligomeric Aβ1-42聚集型態之鑑定 83 3.維生素B群、α-lipoic acid、Taurine在小鼠微膠細胞株BV-2中的測試濃度 84 4. BV-2細胞攝取oAβ1-42模式之建立 84 5.樣品調控BV-2細胞攝入oAβ1-42之能力評估 85 6. α-lipoic acid透過CD36增加BV-2細胞對oAβ1-42的吞噬作用 87 7. ALA增加CD36之表現可能是透過COX-2 / 15-deoxy-△12,14-PGJ2 / PPAR-γ而達到 89 8. ALA提升BV-2細胞攝入oAβ1-42之假說 90 第七章 結論 93 第八章 參考文獻 94

    Aarum, J., Sandberg, K., Haeberlein, S. L., & Persson, M. A. (2003). Migration and differentiation of neural precursor cells can be directed by microglia. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15983-15988. doi: 10.1073/pnas.2237050100
    Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARgamma signaling and metabolism: the good, the bad and the future. Nature medicine, 19(5), 557-566. doi: 10.1038/nm.3159
    Aisen, P. S. (2002). The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. The Lancet. Neurology, 1(5), 279-284.
    Alom, J., Mahy, J. N., Brandi, N., & Tolosa, E. (1991). Cerebrospinal fluid taurine in Alzheimer's disease. Annals of neurology, 30(5), 735. doi: 10.1002/ana.410300518
    Arai, H., Kobayashi, K., Ichimiya, Y., Kosaka, K., & Iizuka, R. (1984). A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging, 5(4), 319-321.
    Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: a review. The British journal of nutrition, 1-7. doi: 10.1017/s0007114514000178
    Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D., & Yednock, T. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature medicine, 6(8), 916-919. doi: 10.1038/78682
    Bartzokis, G. (2011). Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging, 32(8), 1341-1371. doi: 10.1016/j.neurobiolaging.2009.08.007
    Bartzokis, G., Lu, P. H., & Mintz, J. (2004). Quantifying age-related myelin breakdown with MRI: novel therapeutic targets for preventing cognitive decline and Alzheimer's disease. Journal of Alzheimer's disease : JAD, 6(6 Suppl), S53-59.
    Bartzokis, G., Lu, P. H., & Mintz, J. (2007). Human brain myelination and amyloid beta deposition in Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 3(2), 122-125. doi: 10.1016/j.jalz.2007.01.019
    Bell, R. D., & Zlokovic, B. V. (2009). Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta neuropathologica, 118(1), 103-113. doi: 10.1007/s00401-009-0522-3
    Benilova, I., Karran, E., & De Strooper, B. (2012). The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nature neuroscience, 15(3), 349-357. doi: 10.1038/nn.3028
    Bertram, L., & Tanzi, R. E. (2008). Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature reviews. Neuroscience, 9(10), 768-778. doi: 10.1038/nrn2494
    Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., & Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. Journal of neuroimmunology, 27(2-3), 229-237.
    Blennow, K. (2004). Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 1(2), 213-225. doi: 10.1602/neurorx.1.2.213
    Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer's disease. The Lancet, 368(9533), 387-403. doi: 10.1016/s0140-6736(06)69113-7
    Blennow, K., & Hampel, H. (2003). CSF markers for incipient Alzheimer's disease. The Lancet. Neurology, 2(10), 605-613.
    Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature reviews. Neuroscience, 8(1), 57-69. doi: 10.1038/nrn2038
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 3(3), 186-191. doi: 10.1016/j.jalz.2007.04.381
    Bruni, A. C. (1998). Cloning of a gene bearing missense mutations in early onset familial Alzheimer's disease: a Calabrian study. Functional neurology, 13(3), 257-261.
    Bujold, K., Rhainds, D., Jossart, C., Febbraio, M., Marleau, S., & Ong, H. (2009). CD36-mediated cholesterol efflux is associated with PPARgamma activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovascular research, 83(3), 457-464. doi: 10.1093/cvr/cvp118
    Butterworth, R. F., Giguere, J. F., & Besnard, A. M. (1985). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy: 1. The pyruvate dehydrogenase complex. Neurochemical research, 10(10), 1417-1428.
    Butterworth, R. F., Giguere, J. F., & Besnard, A. M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase. Neurochemical research, 11(4), 567-577.
    Cai, Z., Hussain, M. D., & Yan, L. J. (2014). Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. The International journal of neuroscience, 124(5), 307-321. doi: 10.3109/00207454.2013.833510
    Calingasan, N. Y., Gandy, S. E., Baker, H., Sheu, K. F., Kim, K. S., Wisniewski, H. M., & Gibson, G. E. (1995). Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain research, 677(1), 50-60.
    Calingasan, N. Y., Gandy, S. E., Baker, H., Sheu, K. F., Smith, J. D., Lamb, B. T., Gearhart, J. D., Buxbaum, J. D., Harper, C., Selkoe, D. J., Price, D. L., Sisodia, S. S., & Gibson, G. E. (1996). Novel neuritic clusters with accumulations of amyloid precursor protein and amyloid precursor-like protein 2 immunoreactivity in brain regions damaged by thiamine deficiency. The American journal of pathology, 149(3), 1063-1071.
    Chawla, A., Barak, Y., Nagy, L., Liao, D., Tontonoz, P., & Evans, R. M. (2001). PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature medicine, 7(1), 48-52. doi: 10.1038/83336
    Chromy, B. A., Nowak, R. J., Lambert, M. P., Viola, K. L., Chang, L., Velasco, P. T., Jones, B. W., Fernandez, S. J., Lacor, P. N., Horowitz, P., Finch, C. E., Krafft, G. A., & Klein, W. L. (2003). Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry, 42(44), 12749-12760. doi: 10.1021/bi030029q
    Clarke, R., Smith, A. D., Jobst, K. A., Refsum, H., Sutton, L., & Ueland, P. M. (1998). Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Archives of neurology, 55(11), 1449-1455.
    Crum, R. M., Anthony, J. C., Bassett, S. S., & Folstein, M. F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. Jama, 269(18), 2386-2391.
    Dahlgren, K. N., Manelli, A. M., Stine, W. B., Jr., Baker, L. K., Krafft, G. A., & LaDu, M. J. (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. The Journal of biological chemistry, 277(35), 32046-32053. doi: 10.1074/jbc.M201750200
    de Leon, M. J., McRae, T., Tsai, J. R., George, A. E., Marcus, D. L., Freedman, M., Wolf, A. P., & McEwen, B. (1988). Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy. Lancet, 2(8607), 391-392.
    Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., Holtzman, D. M., & Zlokovic, B. V. (2008). apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. The Journal of clinical investigation, 118(12), 4002-4013. doi: 10.1172/jci36663
    Deane, R., Sagare, A., & Zlokovic, B. V. (2008). The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer's disease. Current pharmaceutical design, 14(16), 1601-1605.
    Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., Xu, F., Parisi, M., LaRue, B., Hu, H. W., Spijkers, P., Guo, H., Song, X., Lenting, P. J., Van Nostrand, W. E., & Zlokovic, B. V. (2004). LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 43(3), 333-344. doi: 10.1016/j.neuron.2004.07.017
    Douaud, G., Refsum, H., de Jager, C. A., Jacoby, R., Nichols, T. E., Smith, S. M., & Smith, A. D. (2013). Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9523-9528. doi: 10.1073/pnas.1301816110
    Eikelenboom, P., Rozemuller, J. M., & van Muiswinkel, F. L. (1998). Inflammation and Alzheimer's disease: relationships between pathogenic mechanisms and clinical expression. Experimental neurology, 154(1), 89-98. doi: 10.1006/exnr.1998.6920
    El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D., & Silverstein, S. C. (1998). Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol Aging, 19(1 Suppl), S81-84.
    El Khoury, J., Toft, M., Hickman, S. E., Means, T. K., Terada, K., Geula, C., & Luster, A. D. (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature medicine, 13(4), 432-438. doi: 10.1038/nm1555
    Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., van Swieten, J. C., Hofman, A., Witteman, J. C., & Breteler, M. M. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. Jama, 287(24), 3223-3229.
    Farr, S. A., Price, T. O., Banks, W. A., Ercal, N., & Morley, J. E. (2012). Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice. Journal of Alzheimer's disease : JAD, 32(2), 447-455. doi: 10.3233/jad-2012-120130
    Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., Myers, R. H., Pericak-Vance, M. A., Risch, N., & van Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Jama, 278(16), 1349-1356.
    Feige, J. N., Gelman, L., Michalik, L., Desvergne, B., & Wahli, W. (2006). From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in lipid research, 45(2), 120-159. doi: 10.1016/j.plipres.2005.12.002
    Feng, Y., Li, L., & Sun, X. H. (2011). Monocytes and Alzheimer's disease. Neuroscience bulletin, 27(2), 115-122. doi: 10.1007/s12264-011-1205-3
    Ferrer, I., Gomez-Isla, T., Puig, B., Freixes, M., Ribe, E., Dalfo, E., & Avila, J. (2005). Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Current Alzheimer research, 2(1), 3-18.
    Foley, D. J., & White, L. R. (2002). Dietary intake of antioxidants and risk of Alzheimer disease: food for thought. Jama, 287(24), 3261-3263.
    Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12(3), 189-198.
    Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: a review of progress. Journal of neurology, neurosurgery, and psychiatry, 66(2), 137-147.
    Gibson, C. J., Hossain, M. M., Richardson, J. R., & Aleksunes, L. M. (2012). Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. The Journal of pharmacology and experimental therapeutics, 343(3), 650-660. doi: 10.1124/jpet.112.196543
    Gibson, G., Barclay, L., & Blass, J. (1982). The role of the cholinergic system in thiamin deficiency. Annals of the New York Academy of Sciences, 378, 382-403.
    Gibson, G. E., Ksiezak-Reding, H., Sheu, K. F., Mykytyn, V., & Blass, J. P. (1984). Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochemical research, 9(6), 803-814.
    Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016
    Glezer, I., Simard, A. R., & Rivest, S. (2007). Neuroprotective role of the innate immune system by microglia. Neuroscience, 147(4), 867-883. doi: 10.1016/j.neuroscience.2007.02.055
    Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., & et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 349(6311), 704-706. doi: 10.1038/349704a0
    Goedert, M., Spillantini, M. G., & Crowther, R. A. (1991). Tau proteins and neurofibrillary degeneration. Brain pathology (Zurich, Switzerland), 1(4), 279-286.
    Golbidi, S., Badran, M., & Laher, I. (2011). Diabetes and alpha lipoic Acid. Frontiers in pharmacology, 2, 69. doi: 10.3389/fphar.2011.00069
    Gong, C. X., & Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Current medicinal chemistry, 15(23), 2321-2328.
    Gotz, J., Eckert, A., Matamales, M., Ittner, L. M., & Liu, X. (2011). Modes of Abeta toxicity in Alzheimer's disease. Cellular and molecular life sciences : CMLS, 68(20), 3359-3375. doi: 10.1007/s00018-011-0750-2
    Graeber, M. B., & Streit, W. J. (2010). Microglia: biology and pathology. Acta neuropathologica, 119(1), 89-105. doi: 10.1007/s00401-009-0622-0
    Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83(13), 4913-4917.
    Grygiel-Gorniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition journal, 13, 17. doi: 10.1186/1475-2891-13-17
    Guidotti, A., Badiani, G., & Pepeu, G. (1972). Taurine distribution in cat brain. Journal of neurochemistry, 19(2), 431-435.
    Haan, M. N. (2006). Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease. Nature clinical practice. Neurology, 2(3), 159-166. doi: 10.1038/ncpneuro0124
    Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature reviews. Molecular cell biology, 8(2), 101-112. doi: 10.1038/nrm2101
    Hager, K., Kenklies, M., McAfoose, J., Engel, J., & Munch, G. (2007). Alpha-lipoic acid as a new treatment option for Alzheimer's disease--a 48 months follow-up analysis. Journal of neural transmission. Supplementum(72), 189-193.
    Harvey, R. J., Skelton-Robinson, M., & Rossor, M. N. (2003). The prevalence and causes of dementia in people under the age of 65 years. Journal of neurology, neurosurgery, and psychiatry, 74(9), 1206-1209.
    Heneka, M. T., Nadrigny, F., Regen, T., Martinez-Hernandez, A., Dumitrescu-Ozimek, L., Terwel, D., Jardanhazi-Kurutz, D., Walter, J., Kirchhoff, F., Hanisch, U. K., & Kummer, M. P. (2010). Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6058-6063. doi: 10.1073/pnas.0909586107
    Hickman, S. E., Allison, E. K., & El Khoury, J. (2008). Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(33), 8354-8360. doi: 10.1523/jneurosci.0616-08.2008
    Holmquist, L., Stuchbury, G., Berbaum, K., Muscat, S., Young, S., Hager, K., Engel, J., & Munch, G. (2007). Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Pharmacology & therapeutics, 113(1), 154-164. doi: 10.1016/j.pharmthera.2006.07.001
    Holtta, M., Hansson, O., Andreasson, U., Hertze, J., Minthon, L., Nagga, K., Andreasen, N., Zetterberg, H., & Blennow, K. (2013). Evaluating amyloid-beta oligomers in cerebrospinal fluid as a biomarker for Alzheimer's disease. PloS one, 8(6), e66381. doi: 10.1371/journal.pone.0066381
    Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148(6), 1204-1222. doi: 10.1016/j.cell.2012.02.040
    Huxtable, R. J. (1992). Physiological actions of taurine. Physiological reviews, 72(1), 101-163.
    Hwang, J. S., An, J. M., Cho, H., Lee, S. H., Park, J. H., & Han, I. O. (2015). A dopamine-alpha-lipoic acid hybridization compound and its acetylated form inhibit LPS-mediated inflammation. European journal of pharmacology, 746, 41-49. doi: 10.1016/j.ejphar.2014.10.052
    Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et biophysica acta, 1739(2-3), 198-210. doi: 10.1016/j.bbadis.2004.09.008
    Jellinger, K. A. (2004). Head injury and dementia. Current opinion in neurology, 17(6), 719-723.
    Justice, E., & Carruthers, D. M. (2005). Cardiovascular risk and COX-2 inhibition in rheumatological practice. Journal of human hypertension, 19(1), 1-5. doi: 10.1038/sj.jhh.1001777
    Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of immunology (Baltimore, Md. : 1950), 188(1), 21-28. doi: 10.4049/jimmunol.1101029
    Kamenova, P. (2006). Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of alpha-lipoic acid. Hormones (Athens, Greece), 5(4), 251-258.
    Kastenholz, B., Garfin, D. E., Horst, J., & Nagel, K. A. (2009). Plant metal chaperones: a novel perspective in dementia therapy. Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis, 16(2), 81-83. doi: 10.1080/13506120902879392
    Kawahara, K., Suenobu, M., Yoshida, A., Koga, K., Hyodo, A., Ohtsuka, H., Kuniyasu, A., Tamamaki, N., Sugimoto, Y., & Nakayama, H. (2012). Intracerebral microinjection of interleukin-4/interleukin-13 reduces beta-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience, 207, 243-260. doi: 10.1016/j.neuroscience.2012.01.049
    Kettenmann, H., Hanisch, U. K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological reviews, 91(2), 461-553. doi: 10.1152/physrev.00011.2010
    Kim, H. Y., Kim, H. V., Yoon, J. H., Kang, B. R., Cho, S. M., Lee, S., Kim, J. Y., Kim, J. W., Cho, Y., Woo, J., & Kim, Y. (2014). Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease. Scientific reports, 4, 7467. doi: 10.1038/srep07467
    Koriyama, Y., Nakayama, Y., Matsugo, S., Sugitani, K., Ogai, K., Takadera, T., & Kato, S. (2013). Anti-inflammatory effects of lipoic acid through inhibition of GSK-3beta in lipopolysaccharide-induced BV-2 microglial cells. Neuroscience research, 77(1-2), 87-96. doi: 10.1016/j.neures.2013.07.001
    LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer's disease. Nature reviews. Neuroscience, 8(7), 499-509. doi: 10.1038/nrn2168
    Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457(7233), 1128-1132. doi: 10.1038/nature07761
    Lawson, L. J., Perry, V. H., & Gordon, S. (1992). Turnover of resident microglia in the normal adult mouse brain. Neuroscience, 48(2), 405-415.
    Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P., & Selkoe, D. J. (2003). Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron, 40(6), 1087-1093.
    Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C. E., Jondro, P. D., Schmidt, S. D., Wang, K., & et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science (New York, N.Y.), 269(5226), 973-977.
    Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. The European journal of neuroscience, 22(8), 1942-1950. doi: 10.1111/j.1460-9568.2005.04391.x
    Liu, Y., Zhang, R., Yan, K., Chen, F., Huang, W., Lv, B., Sun, C., Xu, L., Li, F., & Jiang, X. (2014). Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. Journal of neuroinflammation, 11, 135. doi: 10.1186/1742-2094-11-135
    Lu'o'ng, K., & Nguyen, L. T. (2011). Role of thiamine in Alzheimer's disease. American journal of Alzheimer's disease and other dementias, 26(8), 588-598. doi: 10.1177/1533317511432736
    Lu, D. Y., Tang, C. H., Liou, H. C., Teng, C. M., Jeng, K. C., Kuo, S. C., Lee, F. Y., & Fu, W. M. (2007). YC-1 attenuates LPS-induced proinflammatory responses and activation of nuclear factor-kappaB in microglia. British journal of pharmacology, 151(3), 396-405. doi: 10.1038/sj.bjp.0707187
    Luchsinger, J. A., & Mayeux, R. (2004). Dietary factors and Alzheimer's disease. The Lancet. Neurology, 3(10), 579-587. doi: 10.1016/s1474-4422(04)00878-6
    Luchsinger, J. A., Tang, M. X., Miller, J., Green, R., & Mayeux, R. (2007). Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Archives of neurology, 64(1), 86-92. doi: 10.1001/archneur.64.1.86
    Luque-Contreras, D., Carvajal, K., & Toral-Rios, D. (2014). Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease? , 2014, 497802. doi: 10.1155/2014/497802
    Maczurek, A., Hager, K., Kenklies, M., Sharman, M., Martins, R., Engel, J., Carlson, D. A., & Munch, G. (2008). Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Advanced drug delivery reviews, 60(13-14), 1463-1470. doi: 10.1016/j.addr.2008.04.015
    Maiese, K., & Chong, Z. Z. (2003). Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends in pharmacological sciences, 24(5), 228-232. doi: 10.1016/s0165-6147(03)00078-6
    Marcinkiewicz, J., & Kontny, E. (2014). Taurine and inflammatory diseases. Amino acids, 46(1), 7-20. doi: 10.1007/s00726-012-1361-4
    Medina, M., & Avila, J. (2014). New perspectives on the role of tau in Alzheimer's disease. Implications for therapy. Biochemical pharmacology, 88(4), 540-547. doi: 10.1016/j.bcp.2014.01.013
    Miners, J. S., Morris, S., Love, S., & Kehoe, P. G. (2011). Accumulation of insoluble amyloid-beta in down's syndrome is associated with increased BACE-1 and neprilysin activities. Journal of Alzheimer's disease : JAD, 23(1), 101-108. doi: 10.3233/jad-2010-101395
    Moga, T., & Das, S. (2013). The 2-Series Eicosanoids in Cancer: Future Targets for Glioma Therapy? Journal of Cancer Therapy, 04(01), 338-352. doi: 10.4236/jct.2013.41041
    Molina, J. A., Jimenez-Jimenez, F. J., Hernanz, A., Fernandez-Vivancos, E., Medina, S., de Bustos, F., Gomez-Escalonilla, C., & Sayed, Y. (2002). Cerebrospinal fluid levels of thiamine in patients with Alzheimer's disease. Journal of neural transmission, 109(7-8), 1035-1044. doi: 10.1007/s007020200087
    Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Aggarwal, N., Wilson, R. S., & Scherr, P. A. (2002). Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. Jama, 287(24), 3230-3237.
    Mungas, D. (1991). In-office mental status testing: a practical guide. Geriatrics, 46(7), 54-58, 63, 66.
    Nardone, R., Holler, Y., Storti, M., Christova, M., Tezzon, F., Golaszewski, S., Trinka, E., & Brigo, F. (2013). Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. TheScientificWorldJournal, 2013, 309143. doi: 10.1155/2013/309143
    Olmsted, J. B. (1986). Microtubule-associated proteins. Annual review of cell biology, 2, 421-457. doi: 10.1146/annurev.cb.02.110186.002225
    Packer, L., Witt, E. H., & Tritschler, H. J. (1995). alpha-Lipoic acid as a biological antioxidant. Free radical biology & medicine, 19(2), 227-250.
    Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., & Xu, T. L. (2010). Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain : a journal of neurology, 133(Pt 5), 1342-1351. doi: 10.1093/brain/awq069
    Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., 3rd, Lafaille, J. J., Hempstead, B. L., Littman, D. R., & Gan, W. B. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 155(7), 1596-1609. doi: 10.1016/j.cell.2013.11.030
    Patterson, C., Feightner, J. W., Garcia, A., Hsiung, G. Y., MacKnight, C., & Sadovnick, A. D. (2008). Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 178(5), 548-556. doi: 10.1503/cmaj.070796
    Permanne, B., Adessi, C., Saborio, G. P., Fraga, S., Frossard, M. J., Van Dorpe, J., Dewachter, I., Banks, W. A., Van Leuven, F., & Soto, C. (2002). Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 16(8), 860-862. doi: 10.1096/fj.01-0841fje
    Perra, A., Pibiri, M., Sulas, P., Simbula, G., Ledda-Columbano, G. M., & Columbano, A. (2008). Alpha-lipoic acid promotes the growth of rat hepatic pre-neoplastic lesions in the choline-deficient model. Carcinogenesis, 29(1), 161-168. doi: 10.1093/carcin/bgm205
    Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D., Doody, R., Ferris, S., Galasko, D., Jin, S., Kaye, J., Levey, A., Pfeiffer, E., Sano, M., van Dyck, C. H., & Thal, L. J. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. The New England journal of medicine, 352(23), 2379-2388. doi: 10.1056/NEJMoa050151
    Petit, A., Bihel, F., Alves da Costa, C., Pourquie, O., Checler, F., & Kraus, J. L. (2001). New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nature cell biology, 3(5), 507-511. doi: 10.1038/35074581
    Pohanka, M. (2013). Alzheimer s disease and oxidative stress: a review. Current medicinal chemistry, 21(3), 356-364.
    Preston, S. D., Steart, P. V., Wilkinson, A., Nicoll, J. A., & Weller, R. O. (2003). Capillary and arterial cerebral amyloid angiopathy in Alzheimer's disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathology and applied neurobiology, 29(2), 106-117.
    Prokop, S., Miller, K. R., & Heppner, F. L. (2013). Microglia actions in Alzheimer's disease. Acta neuropathologica. doi: 10.1007/s00401-013-1182-x
    Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., Rosner, M. R., Safavi, A., Hersh, L. B., & Selkoe, D. J. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. The Journal of biological chemistry, 273(49), 32730-32738.
    Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer's disease. The New England journal of medicine, 362(4), 329-344. doi: 10.1056/NEJMra0909142
    Ramer, R., Heinemann, K., Merkord, J., Rohde, H., Salamon, A., Linnebacher, M., & Hinz, B. (2013). COX-2 and PPAR-gamma confer cannabidiol-induced apoptosis of human lung cancer cells. Molecular cancer therapeutics, 12(1), 69-82. doi: 10.1158/1535-7163.mct-12-0335
    Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in molecular medicine, 14(2), 45-53. doi: 10.1016/j.molmed.2007.12.002
    Rosendorff, C., Beeri, M. S., & Silverman, J. M. (2007). Cardiovascular risk factors for Alzheimer's disease. The American journal of geriatric cardiology, 16(3), 143-149.
    Roychaudhuri, R., Yang, M., Hoshi, M. M., & Teplow, D. B. (2009). Amyloid beta-protein assembly and Alzheimer disease. The Journal of biological chemistry, 284(8), 4749-4753. doi: 10.1074/jbc.R800036200
    Rubio-Perez, J. M., & Morillas-Ruiz, J. M. (2012). A review: inflammatory process in Alzheimer's disease, role of cytokines. TheScientificWorldJournal, 2012, 756357. doi: 10.1100/2012/756357
    Sadowski, M., Pankiewicz, J., Scholtzova, H., Ripellino, J. A., Li, Y., Schmidt, S. D., Mathews, P. M., Fryer, J. D., Holtzman, D. M., Sigurdsson, E. M., & Wisniewski, T. (2004). A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. The American journal of pathology, 165(3), 937-948.
    Santa-Maria, I., Hernandez, F., Moreno, F. J., & Avila, J. (2007). Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. Neuroscience letters, 429(2-3), 91-94. doi: 10.1016/j.neulet.2007.09.068
    Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D., & Seubert, P. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400(6740), 173-177. doi: 10.1038/22124
    Schenk, D., Hagen, M., & Seubert, P. (2004). Current progress in beta-amyloid immunotherapy. Current opinion in immunology, 16(5), 599-606. doi: 10.1016/j.coi.2004.07.012
    Scher, J. U., & Pillinger, M. H. (2005). 15d-PGJ2: the anti-inflammatory prostaglandin? Clinical immunology (Orlando, Fla.), 114(2), 100-109. doi: 10.1016/j.clim.2004.09.008
    Seab, J. P., Jagust, W. J., Wong, S. T., Roos, M. S., Reed, B. R., & Budinger, T. F. (1988). Quantitative NMR measurements of hippocampal atrophy in Alzheimer's disease. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 8(2), 200-208.
    Selkoe, D. J. (2008). Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behavioural brain research, 192(1), 106-113. doi: 10.1016/j.bbr.2008.02.016
    Seshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D'Agostino, R. B., Wilson, P. W., & Wolf, P. A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. The New England journal of medicine, 346(7), 476-483. doi: 10.1056/NEJMoa011613
    Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica et biophysica acta, 1790(10), 1149-1160. doi: 10.1016/j.bbagen.2009.07.026
    Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., Hamilton, J. L., Simonyi, A., Sun, A. Y., Gu, Z., Hong, J. S., Weisman, G. A., & Sun, G. Y. (2011). Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. Journal of neuroinflammation, 8, 121. doi: 10.1186/1742-2094-8-121
    Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., Holtzman, D. M., Miller, C. A., Strickland, D. K., Ghiso, J., & Zlokovic, B. V. (2000). Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. The Journal of clinical investigation, 106(12), 1489-1499. doi: 10.1172/jci10498
    Shimizu, E., Kawahara, K., Kajizono, M., Sawada, M., & Nakayama, H. (2008). IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. Journal of immunology (Baltimore, Md. : 1950), 181(9), 6503-6513.
    Siemers, E., Skinner, M., Dean, R. A., Gonzales, C., Satterwhite, J., Farlow, M., Ness, D., & May, P. C. (2005). Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clinical neuropharmacology, 28(3), 126-132.
    Sokolowski, J. D., & Mandell, J. W. (2011). Phagocytic clearance in neurodegeneration. The American journal of pathology, 178(4), 1416-1428. doi: 10.1016/j.ajpath.2010.12.051
    Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., Xu, X. J., Wands, J. R., & de la Monte, S. M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? Journal of Alzheimer's disease : JAD, 7(1), 63-80.
    Su, B., Wang, X., Nunomura, A., Moreira, P. I., Lee, H. G., Perry, G., Smith, M. A., & Zhu, X. (2008). Oxidative stress signaling in Alzheimer's disease. Current Alzheimer research, 5(6), 525-532.
    Sun, Q., Hu, H., Wang, W., Jin, H., Feng, G., & Jia, N. (2014). Taurine attenuates amyloid beta 1-42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells. Biochemical and biophysical research communications, 447(3), 485-489. doi: 10.1016/j.bbrc.2014.04.019
    Terry, A. V., Jr., & Buccafusco, J. J. (2003). The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. The Journal of pharmacology and experimental therapeutics, 306(3), 821-827. doi: 10.1124/jpet.102.041616
    Thirunavukkarasu, V., Anitha Nandhini, A. T., & Anuradha, C. V. (2004). Lipoic acid attenuates hypertension and improves insulin sensitivity, kallikrein activity and nitrite levels in high fructose-fed rats. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 174(8), 587-592. doi: 10.1007/s00360-004-0447-z
    Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., & Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93(2), 241-252.
    Turunc Bayrakdar, E., Uyanikgil, Y., Kanit, L., Koylu, E., & Yalcin, A. (2014). Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Abeta(1-42)-induced rat model of Alzheimer's disease. Free radical research, 48(2), 146-158. doi: 10.3109/10715762.2013.857018
    Ulivi, V., Lenti, M., Gentili, C., Marcolongo, G., Cancedda, R., & Descalzi Cancedda, F. (2011). Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway. Arthritis research & therapy, 13(3), R92. doi: 10.1186/ar3367
    Vassar, R. (2001). The beta-secretase, BACE: a prime drug target for Alzheimer's disease. Journal of molecular neuroscience : MN, 17(2), 157-170. doi: 10.1385/jmn:17:2:157
    Vassar, R. (2002). Beta-secretase (BACE) as a drug target for Alzheimer's disease. Advanced drug delivery reviews, 54(12), 1589-1602.
    von Arnim, C. A., Kinoshita, A., Peltan, I. D., Tangredi, M. M., Herl, L., Lee, B. M., Spoelgen, R., Hshieh, T. T., Ranganathan, S., Battey, F. D., Liu, C. X., Bacskai, B. J., Sever, S., Irizarry, M. C., Strickland, D. K., & Hyman, B. T. (2005). The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. The Journal of biological chemistry, 280(18), 17777-17785. doi: 10.1074/jbc.M414248200
    Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., & Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535-539. doi: 10.1038/416535a
    Wang, K. C., Tsai, C. P., Lee, C. L., Chen, S. Y., Lin, G. J., Yen, M. H., Sytwu, H. K., & Chen, S. J. (2013). alpha-Lipoic acid enhances endogenous peroxisome-proliferator-activated receptor-gamma to ameliorate experimental autoimmune encephalomyelitis in mice. Clinical science (London, England : 1979), 125(7), 329-340. doi: 10.1042/cs20120560
    Wang, Y. P., Wu, Y., Li, L. Y., Zheng, J., Liu, R. G., Zhou, J. P., Yuan, S. Y., Shang, Y., & Yao, S. L. (2011). Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-kappaB and MAPKs in BV-2 microglial cells. Journal of neuroinflammation, 8, 95. doi: 10.1186/1742-2094-8-95
    Waring, S. C., & Rosenberg, R. N. (2008). Genome-wide association studies in Alzheimer disease. Archives of neurology, 65(3), 329-334. doi: 10.1001/archneur.65.3.329
    Weiner, H. L., & Frenkel, D. (2006). Immunology and immunotherapy of Alzheimer's disease. Nature reviews. Immunology, 6(5), 404-416. doi: 10.1038/nri1843
    Weller, R. O., Djuanda, E., Yow, H. Y., & Carare, R. O. (2009). Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta neuropathologica, 117(1), 1-14. doi: 10.1007/s00401-008-0457-0
    Wildsmith, K. R., Holley, M., Savage, J. C., Skerrett, R., & Landreth, G. E. (2013). Evidence for impaired amyloid beta clearance in Alzheimer's disease. Alzheimer's research & therapy, 5(4), 33. doi: 10.1186/alzrt187
    Wisniewski, T., & Frangione, B. (1992). Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neuroscience letters, 135(2), 235-238.
    Yamanaka, M., Ishikawa, T., Griep, A., Axt, D., Kummer, M. P., & Heneka, M. T. (2012). PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(48), 17321-17331. doi: 10.1523/jneurosci.1569-12.2012
    Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M., & Lee, J. M. (2006). Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. The Journal of biological chemistry, 281(34), 24566-24574. doi: 10.1074/jbc.M602440200
    Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., & Schmidt, A. M. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature, 382(6593), 685-691. doi: 10.1038/382685a0
    Yang, C. N., Shiao, Y. J., Shie, F. S., Guo, B. S., Chen, P. H., Cho, C. Y., Chen, Y. J., Huang, F. L., & Tsay, H. J. (2011). Mechanism mediating oligomeric Abeta clearance by naive primary microglia. Neurobiology of disease, 42(3), 221-230. doi: 10.1016/j.nbd.2011.01.005
    Zhang, C. E., Wei, W., Liu, Y. H., Peng, J. H., Tian, Q., Liu, G. P., Zhang, Y., & Wang, J. Z. (2009). Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gamma-secretase and phosphorylation of amyloid precursor protein in rat brain. The American journal of pathology, 174(4), 1481-1491. doi: 10.2353/ajpath.2009.081036
    Zhuo, J. M., & Pratico, D. (2010). Acceleration of brain amyloidosis in an Alzheimer's disease mouse model by a folate, vitamin B6 and B12-deficient diet. Experimental gerontology, 45(3), 195-201. doi: 10.1016/j.exger.2009.12.005

    無法下載圖示 本全文未授權公開
    QR CODE