研究生: |
黃婉茹 Huang Wan-ju |
---|---|
論文名稱: |
利用無水氯化鐵以及溴化丙烯基催化硫化物或吲哚進行1,4-加成至αβ共軛不飽和烯類 The iron(Ⅲ)chloride or allyl bromide 1,4-addition of mercaptans or indole to αβ-unsaturated enes |
指導教授: |
姚清發
Yao, Ching-Fa |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 無水氯化鐵 、硫化物 、吲哚 、溴化丙烯基 |
英文關鍵詞: | iron(Ⅲ)chloride, allyl bromide, mercaptans, indole |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無溶劑和空氣中,我們用無水鐵 (Ⅲ)來快速催化αβ共軛不飽和酮和硫化物,進行1,4加成。我們發現,當αβ共軛不飽和酮本身反應性越好,或著是立體障礙越小 (如MVK 1a和thiophenol 2a),則在室溫下所需要的時間就會越短;反之 (如trans-4-phenyl-3-butene-2-one 1b),則反應時間拉長,也都獲得高產率的keto-sulfide。相較於其他路易斯酸,無水氯化鐵 (Ⅲ)較容易取得,也更具有活性。
在50℃下,利用溴化烯丙基 7 (allyl bromide)催化indole與αβ共軛不飽和酮進行1,4加成反應,可得到高產率的keto-indole。如果反應系統是在室溫日照光下的條件,也可獲得高產率的1,4加成產物。
使用有機催化試劑7,相較於已知使用過渡態金屬路易斯酸,反應後之系統更容易純化,產率更高。
1
(a) Fluharty A.L., Patai S., (Ed.) The Chemistry of the Thiol Group, (1974), Wiley, New York. p. 589 Part 2
(b) Fujita E., Nagao Y.J., Bioorg. Chem., Volume: 6, (1977), p. 287
2
(a) Julia M., Badet B., Bull. Soc. Chim. Fr., (1975), p. 1363
(b) Trost B.M., Keeley D.E., J. Org. Chem., Volume: 40, (1975), p. 2013
(c) Shono T., Matsumura Y., Kashimura S., Hatanaka K., J. Am. Chem. Soc., Volume: 101, (1979), p. 4752
(d) Chang Y.-H., Pinnick H.W., J. Org. Chem., Volume: 43, (1978), p. 373
(e) Shono T., Matsumura Y., Kashimura S., Hatanaka K., J. Am. Chem. Soc., Volume: 101, (1979), p. 4752
3
(a) Bergman E.D., Ginsberg D., Rappo R., Org. React., Volume: 10, (1959), p. 179
(b) Oare D.A., Heathcock C.A., Eliel E.L., Wilen S.H., (Ed.) Topics in Stereochemistry, Volume: Vol. 9, (1989), Wiley, New York. p. 277
4
Zhu S., Cohen T., Tetrahedron, Volume: 53, (1997), p. 17607
5
(a) Hiemstra H., Wiberg H., J. Am. Chem. Soc., Volume: 103, (1981), p. 417
(b) Suzuki K., Ikekawa A., Mukaiyama T., Bull. Soc. Chem. Jpn., Volume: 55, (1982), p. 3277
(c) Yamashita H., Mukaiyama T., Chem. Lett., (1985), p. 363
(d) Emori E., Arai T., Sasai H., Shibasaki M., J. Am. Chem. Soc., Volume: 120, (1998), p. 4043
6
(a) Bandini M., Cozzi P.G., Giacomini M., Melchiorre P., Selva S., Umani-Ronchi A., J. Org. Chem., Volume: 67, (2002), p. 3700
(b) Srivastava N., Banik B.K., J. Org. Chem., Volume: 68, (2003), p. 2109
(c) Alam M.M., Varala R., Adapa S.R., Tetrahedron Lett., Volume: 44, (2003), p. 5115
(d) Garg S.K., Kumar R., Chakraborti A.K., Tetrahedron Lett., Volume: 46, (2005), p. 1721
7
Novak L., Kolontis P., Szantay C., Aszodi D., Kajtar M., Tetrahedron, Volume: 38, (1982), p. 153
8
In our studies, a solution of deionized water was treated with a mixture of 2-cyclohexen-1-one and thiophenol precisely under the conditions given in Tale’s paper as follows. Only 15% of the expected product was observed by NMR analysis. As expected, similar results were observed and only 35% and 20% of product, for a 24 h reaction were found when chalcone and trans -4-phenyl-3-butene-2-one were used, respectively: Khatik G.L., Kumar R., Chakraborti A.K., Org. Lett., Volume: 8, (2006), p. 2433
9 (a) Laszlo P., Montaufier M.-T., Randriamahefa S.L., Tetrahedron Lett., Volume: 31, (1990), p. 4867
(b) Christoffers J., Synlett, (2001), p. 763
10 (a) Nakamura M., Matsuo K., Ito S., Nakamura E., J. Am. Chem. Soc., Volume: 126, (2004), p. 3686
(b) Nakamura M., Hirai A., Nakamura E., J. Am. Chem. Soc., Volume: 122, (2000), p. 978
(c) Nakamura M., Matsuo K., Inoue T., Nakamura E., Org. Lett., Volume: 5, (2003), p. 1373
11
(a) Martin R., Furstner A., Angew. Chem., Int. Ed., Volume: 43, (2004), p. 3955
(b) Nagano T., Hayashi T., Org. Lett., Volume: 6, (2004), p. 1297
(c) Bedford R.B., Bruce D.W., Frost R.M., Goodby J.W., Hird M., Chem. Commun., (2004), p. 2822
12
(a) Bodwell J.R., Patwardhan B.H., Dittmer D.C., J. Org. Chem., Volume: 49, (1984), p. 4192
(b) Firouzabadi H., Iranpoor N., Jafari A.A., Synlett, (2005), p. 299