研究生: |
沈庭瑋 Ting-Wei Shen |
---|---|
論文名稱: |
電腦麻將程式TaKe的設計與實作 The Design and Implementation of the Mahjong Program TaKe |
指導教授: |
林順喜
Lin, Shun-Shii |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 人工智慧 、貝氏信賴網路 、不完全資訊遊戲 、電腦麻將 |
英文關鍵詞: | artificial intelligence, Bayesian belief network, imperfect information game, computer mahjong |
論文種類: | 學術論文 |
相關次數: | 點閱:270 下載:45 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年在科技不斷進步之下,人工智慧電腦對局也不斷有新的發展與成果,越來越多新的技術被研發出來,舊有的技術也越來越成熟,但是相對於明確資訊的對局遊戲,不明確且帶有機率性的對局遊戲程式一直以來在學術上討論、探討的相關演算法較為少見,因此在這篇論文之中將會討論關於電腦麻將程式的人工智慧開發,所運用到的技術。
在本篇論文中,將會說明電腦麻將程式TaKe中所使用到的貝氏信賴網路演算法,以及人類麻將高手會使用的打牌技巧,如何來輔助電腦程式,找尋在過去麻將論文中較少提到的避免放槍機制,提供新的捨牌策略,以做到降低放槍機率。
目前該程式曾在TAAI 2013電腦對局比賽獲得銅牌,在TCGA 2014電腦對局比賽雖然獲獎未果,但是在比賽過程中該程式放槍次數是最低的,以玆證明使用的方法確實能達到期望中避免放槍的效果。在台灣十六張麻將雖然多以胡牌為最主要目的,但是在日本麻將因計分方式不同,因此未來若是有興趣開發日本麻將,或是在其他帶有機率性、不明確資訊遊戲的電腦程式開發,期望本論文能給予開發者一些啟發。
Because of the advances in science and technology, many computer games researchers continue to advance new methods and achievements in recent years. The existing technology has become increasingly mature. But relative to the perfect information games, programs that play imperfect information games have never been easier to compete with human players. And there is less paper talking about the algorithms that related to imperfect information games. In this thesis, we will discuss the development of computer AI program for playing mahjong.
This thesis will explain most of the algorithms which have been used in our mahjong program “TaKe”. These algorithms include the skills that many master mahjong players have, and a Bayesian network algorithm to devise new strategies to change the original card throwing decision, and to reduce the winning rate of other players.
Our program “TaKe” had won the bronze medal at TAAI 2013 computer game competitions. Though it hadn't won any prize at TCGA 2014 computer game competitions, but the number of the cards it was throwing result in a win to other players was the smallest, so that these methods are able to achieve the desired effect. We expect that the methods presented in this thesis can not only be used for the computer mahjong program, but alsofor any other imperfect information games with probability in the future.
[1] Ian Frank, Computer Bridge Survey, 1997, Electrotechnical Laboratory, Machine Inference Group, Umezono 1-1-4, Tsukuba, Ibaraki, JAPAN 305.
[2] Ian Frank, David Basin, Search in Games with Incomplete Information: a Case Study Using Bridge Card Play, 1998, Complex Games Lab, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba,Ibaraki, JAPAN 305.
[3] Sylvain Gelly and David Silver, Combining Online and Offline Knowledge in UCT, 2007, In international Conference on Machine Learning.
[4] M. Ginsberg, How Computers will Play Bridge,The Bridge World, 1995.
[5] Daniel Hellsson, A MahJong-Playing Program, 2000, Lund Institute of Technology, Lund University.
[6] Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani, Algorithmic Game Theory, 2007.
[7] Sheldon M. Ross, Introduction to Probability Models, 2010.
[8] Stephen J. J. Smith, Dana Nau, Tom Throop, Computer bridge : A Big Win for AI Planning, 1998, AI Magazine, 19(2):93–105.
[9] 世界麻將網,http://mindmahjong.com/info/listinfo.asp?class=39。
[10] 米明壁,中國麻將遊戲與數理分析, 2009,五南圖書。
[11] 林典餘,麻將人工智慧之研究。2008,國立交通大學研究所碩士論文。
[12] 張無忌,台灣麻將必勝法36招, 1995,金波蘿文化出版。
[13] 張善敏,麻將完全攻略, 2008,活泉書坊。
[14] 張瓈文,「德州撲克」不完全資訊賽局之研究。2006,國立臺灣資訊工程研究所碩士論文。
[15] 莊凱閔、陳玥汝,電腦麻將演算法及相關議題之研究。2007,第十二屆人工智慧與應用研討會。
[16] 唐心皓,吹牛骰子之人工智慧改良,國立臺灣師範大學資工所碩士論文,2011。
[17] 陳昱仁,模糊知識本體之應用,國立台南大學資工所碩士論文,2011。
[18] 陳新颺,電腦麻將程式ThousandWind,國立臺灣師範大學資工所碩士論文,2013。
[19] 黃信翰,吹牛骰子之人工智慧研究,國立臺灣師範大學資工所碩士論文,2009。
[20] 梁聖彥,朱德清,林順喜,機率性對局遊戲的電腦解法研究。2000,第五屆人工智慧與應用研討會。
[21] 維基百科編者,貝氏網路,2010。
[22] 維基百科編者,台灣麻將,2014。
[23] 維基百科編者,日本麻將,2014。
[24] 維基百科編者,Mahjong,2014。
[25] 孤獨求敗,台灣麻將必勝戰法, 2009,體面文化出版。