簡易檢索 / 詳目顯示

研究生: 謝欣玲
Hsieh, Hsin-Ling
論文名稱: 基於科學運算之運算思維導向程式設計教學
Teaching Programming to Science Majors by Modelling
指導教授: 林育慈
Lin, Yu-Tzu
口試委員: 吳正己 張凌倩
口試日期: 2020/07/27
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 運算思維科學運算程式設計教學STEM
英文關鍵詞: Computational Thinking, Scientific Computing, Programming Instruction, STEM
DOI URL: http://doi.org/10.6345/NTNU202100416
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 名詞釋義 4 第四節 研究限制 7 第二章 文獻探討 8 第一節 STEM跨領域教學 8 第二節 程式設計學習 9 第三節 運算思維 11 第三章 研究方法 15 第一節 研究設計與架構 15 第二節 研究之實驗參與者 18 第三節 研究程序 19 第四節 研究工具 22 第五節 資料蒐集與分析 32 第四章 分析結果與討論 36 第一節 分析結果 36 第二節 討論 55 第五章 結論與建議 64 第一節 結論 64 第二節 建議 68 參考文獻 69 附錄一 科學程式設計教材範例(物理與程式) 75 附錄二 程式設計成就測驗 91 附錄三 科學成就測驗 93 附錄四 科學程式設計態度問卷 94

    Armoni, M., Meerbaum-Salant, O., &Ben-Ari, M. (2015). From scratch to “Real” programming. ACM Transactions on Computinig Education, 14(4). https://doi.org/10.1145/2677087
    Aydin, G. (2020). Prerequisites for elementary school teachers before practicing STEM education with students: A case study. Eurasian Journal of Educational Research, 2020(88), 1–40. https://doi.org/10.14689/ejer.2020.88.1
    Barr, V., &Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905
    Bennedsen, J., &Caspersen, M. E. (2008). Abstraction Ability as an Indicator of Success for Learning Computing Science ? 15–25.
    Bennedsen, J., &Caspersen, M. E. (2019). Failure Rates in Introductory Programming-12 Years Later (Vol. 10).
    Brewe, E. (2008). Modeling theory applied: Modeling Instruction in introductory physics. American Journal of Physics, 76(12), 1155–1160. https://doi.org/10.1119/1.2983148
    Burrows, A. C., Breiner, J. M., Keiner, J., &Behm, C. (2014). Biodiesel and integrated STEM: Vertical alignment of high school biology/biochemistry and chemistry. Journal of Chemical Education, 91(9), 1379–1389. https://doi.org/10.1021/ed500029t
    Bybee, B. R. W. (2010). Advancing_STEM_Education_A_20. (September 2010), 30–36.
    Chonacky, N., &Winch, D. (2008). Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments. American Journal of Physics, 76(4), 327–333. https://doi.org/10.1119/1.2837811
    Chonacky, N., Winch, D., &Winch, D. (2017). Integrating computation into the undergraduate curriculum : A vision and guidelines for future developments Integrating computation into the undergraduate curriculum : 327(2008). https://doi.org/10.1119/1.2837811
    Computing, S. (2007). Python for Scientific Computing. 10–20.
    DeJong, T., &VanJoolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
    English, L. D. (2017). Advancing Elementary and Middle School STEM Education. International Journal of Science and Mathematics Education, 15, 5–24. https://doi.org/10.1007/s10763-017-9802-x
    Fan, S. C., &Yu, K. C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107–129. https://doi.org/10.1007/s10798-015-9328-x
    Gilbert, J. K., Boulter, C. J., &Elmer, R. (2000). Positioning Models in Science Education and in Design and Technology Education. Developing Models in Science Education, (1982), 3–17. https://doi.org/10.1007/978-94-010-0876-1_1
    Gomes, A., &Mendes, A. J. (2007). Learning to program - difficulties and solutions | Academic Conference Paper. (May). Retrieved from https://www.researchgate.net/publication/228328491_Learning_to_program_-_difficulties_and_solutions
    Halloun, I. A. (2007). Mediated modeling in science education. In Science and Education (Vol. 16). https://doi.org/10.1007/s11191-006-9004-3
    Harrison, A. G., &Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026. https://doi.org/10.1080/095006900416884
    Herbert, B. E. (2003). 2003_The role of scaffolding student metacognition in developing mental models of complex , Earth and environmental systems. Learning, 1–7.
    Jenkins, T. (2002). O d l p. 53–58.
    Kalelioʇlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200–210. https://doi.org/10.1016/j.chb.2015.05.047
    Lahtinen, E., Ala-Mutka, K., &Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14. https://doi.org/10.1145/1151954.1067453
    Li, Y. (2016). Teaching programming based on Computational Thinking. Proceedings - Frontiers in Education Conference, FIE, 2016-November. https://doi.org/10.1109/FIE.2016.7757408
    Lijnse, P. (2014). Models of / for Teaching Modeling. (November).
    Linn, M. C., &Dalbey, J. (2010). Cognitive consequences of Programming Instruction : Instruction , Access , and Ability Cognitive Consequences of Programming Instruction : Instruction , Access , and Ability. 1520(November 2014), 37–41. https://doi.org/10.1207/s15326985ep2004
    Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., &Settle, A. (2014). Computational thinking in K-9 education. ITiCSE-WGR 2014 - Working Group Reports of the 2014 Innovation and Technology in Computer Science Education Conference, 1–29. https://doi.org/10.1145/2713609.2713610
    McPadden, D., &Brewe, E. (2017). Impact of the second semester University Modeling Instruction course on students’ representation choices. Physical Review Physics Education Research, 13(2), 1–15. https://doi.org/10.1103/PhysRevPhysEducRes.13.020129
    Morrison, J. S. (2006). STEM_Articles.pdf (p. 20). p. 20.
    Özmen, B., &Altun, A. (2014). Undergraduate Students’ Experiences in Programming: Difficulties and Obstacles. Turkish Online Journal of Qualitative Inquiry, 5(3). https://doi.org/10.17569/tojqi.20328
    Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., &Pizarro, C. (2020). Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children? Computers in Human Behavior, 105(December 2018), 105849. https://doi.org/10.1016/j.chb.2018.12.027
    Pettini, F., Mastromarco, P., &Pettini, P. (2006). [Antibacterial activity of endodontic medications]. Minerva Stomatologica, 47(7–8), 309–314. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9793365
    Prinsley, R., &Baranyai, K. (2015). STEM Skills in the Workforce : What Do Employers Want ? Office of the Chief Scientist, Government of Australia, (9), 1–4. https://doi.org/10.13140/RG.2.2.12120.60167
    Psycharis, S., Kalovrektis, K., Sakellaridi, E., &Korres, K. (2018). Unfolding the Curriculum : Physical Computing , Computational Thinking and Computational Experiment in STEM ’ s Transdisciplinary Approach. 19–24.
    Report of a Workshop of Pedagogical Aspects of Computational Thinking Committee for the Workshops on Computational Thinking ; National. (2011).
    Román-González, M., Pérez-González, J. C., Moreno-León, J., &Robles, G. (2018). Can computational talent be detected? Predictive validity of the Computational Thinking Test. International Journal of Child-Computer Interaction, 18, 47–58. https://doi.org/10.1016/j.ijcci.2018.06.004
    Romero, M., Lepage, A., &Lille, B. (2017). Computational thinking development through creative programming in higher education. International Journal of Educational Technology in Higher Education, 14(1). https://doi.org/10.1186/s41239-017-0080-z
    Sanders, B. M. (2009). I 20 i 20. Integrative STEM Education: Primer, 2, 20–26.
    Selby, C. C., &Woollard, J. (2010). Computational Thinking : The Developing Definition.
    Seymour Papert. (1980). Papert_Mindstorms.Pdf.
    Sinsa, P. H. M., Savelsbergh, E. R., &VanJoolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices’ reasoning during computer-based modelling. International Journal of Science Education, 27(14), 1695–1721. https://doi.org/10.1080/09500690500206408
    Svoboda, J., &Passmore, C. (2013). The Strategies of Modeling in Biology Education. Science and Education, 22(1), 119–142. https://doi.org/10.1007/s11191-011-9425-5
    Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia Manufacturing, 3(Ahfe), 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761
    Ting, C., Chia, W., Chang, J., Hua, M., Shih, C., &Fan, H. (2018). The learning analytics of model ‑ based learning facilitated by a problem ‑ solving simulation game. Instructional Science, (0123456789). https://doi.org/10.1007/s11251-018-9461-5
    Tsai, C. (2019). Computers in Human Behavior Improving students ’ understanding of basic programming concepts through visual programming language : The role of self-e ffi cacy. Computers in Human Behavior, 95(October 2018), 224–232. https://doi.org/10.1016/j.chb.2018.11.038
    Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
    Weintrop, D., &Wilensky, U. (2019). Computers & Education Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 142(July), 103646. https://doi.org/10.1016/j.compedu.2019.103646
    White, K. P., &Ingalls, R. G. (2015). We might divide applications of simulation broadly into two categories . The first includes so- called man-in-the-loop simulations used for training and / or entertainment . Many professionals hone their skills and learn emergency procedures in simulated . 1741–1755.
    Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118
    Wing, Jeannette M. (2006). Computational Thinking. 49(3), 33–35.

    無法下載圖示 電子全文延後公開
    2026/04/29
    QR CODE