簡易檢索 / 詳目顯示

研究生: 何明勳
Ming-Hsun Ho
論文名稱: 吸附氫矽鑽石(100),(110),(111)表面上氫振動模能量弛緩速率之理論研究
Theoretical studies of vibrational energy relaxation of X-H stretching modes on hydrogen covered silicon and diamond (100), (111) and (110) surfaces
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 111
中文關鍵詞: 振動能量弛緩吸附氫表面鑽石分子模擬
英文關鍵詞: vibrational energy relaxation, hydrogen covered, silicon, diamond, molecular dynamic
論文種類: 學術論文
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用分子模擬結合Bloch-Redfield能量弛緩理論,計算吸附氫物種的矽及鑽石表面上,包含三種最簡單表面:(100)、(111)及(110),Si-H及C-H延展振動模的生活期值。理論計算結果和實驗值對照相當一致。Si-H振動模在Si(100)-2x1:H表面上的生活期較實驗值稍短的原因是重構後表面原子間作用力明顯改變所致。在吸附氫鑽石表面上,和之前的分子模擬結果相比,選用不同的位能表示式時,對C-H延展振動模生活期的影響並不會很大。另外並比較及探討溫度對生活期的影響,大致上均遵循Fermi Golden Rule的法則。由力-力自相關函數之傅立葉轉換圖中可知,Si-H及C-H振動模能量主要經由緊鄰的Si-Si-H及C-C-H彎曲振動模傳遞出去。在低溫下直接計算C-H延展振動模及C-C-H彎曲振動模能量隨時間變化的關係,支持了這項觀點。

    Molecular dynamics simulation for three simple hydrogen-covered silicon and diamond surfaces, (100), (111) and (110) surfaces, were carried out to calculate the vibrational energy relaxation rates of Si-H and C-H stretches based on Bloch-Redfield theory. The calculated lifetimes on these surfaces were found to be in good agreement with experiment results. Lifetime of Si-H stretching mode on the Si(100)-2x1:H surface was slightly shorter than the experiment result due to surface reconstruction of this surface. Compared with previous MD simulations, the lifetimes of C-H stretching modes on diamond surfaces do not differ significantly from previous results when different bulk potential energy form was used. Besides the computations of the lifetime at room temperature, the results at higher temperature are reported and discussed as well. The temperature dependence results can be described approximately by the temperature dependence based on the Fermi Golden Rule. Analysis of the power spectrum of the fluctuating force along Si-H bond and C-H bond suggested that the dominate energy relaxation pathway on Si(100) and C(100) surfaces is through the couplings to the neighbor Si-Si-H bends and C-C-H bends, respectively. Direct calculation of the energies for the C-H bonds and C-C-H bends at low temperature strongly supports this energy relaxation mechanism.

    吸附氫矽鑽石(100)、(111)及(110)表面 氫振動模能量轉移之理論計算研究 目錄 中文摘要 IV 英文摘要 V 第一章 緒論 1 1-1 振動能的研究背景 1 1-2 氣相方面的振動弛緩速率研究 2 1-3 凝態系統的振動弛緩速率研究 3 1-3.1 液相系統的振動弛緩理論架構 4 1-3.2 半導體表面的振動弛緩理論架構 6 1-4 Bloch-Redfield relaxation theory在計算半導體表面振動能生活期的應用 7 1-5 凝態系統振動模的分析及耦合現象 8 1-6 論文目標 9 第二章 計算方法與模型 11 2-1 振動動力學的基本理論架構 11 2-2 Bloch-Redfield振動弛緩理論 12 2-3 計算模型 14 2-4 位能表示式 15 2-5 振動模的分析 17 2-6 G-matrix在振動能計算上的應用 18 第三章 結果與討論 21 第一節 吸附氫矽表面之探討 21 3-1.1 吸附氫矽(100)表面的生活期計算 21 3-1.2 吸附氫矽(111)及(110)表面的生活期計算 23 3-1.3 造成Si(100)-2x1:H生活期的計算結果和實驗結果誤差的因素 24 3-1.4 溫度對吸附氫矽單晶表面的生活期影響 28 3-1.5 表面不同層間Si-Si鍵鍵長對生活期的影響 31 3-1.6 傳遞Si-H延展振動模能量的可能途徑 32 3-1.7 吸附氘矽(100)表面的生活期計算 34 3-1.8 吸附氘矽(111)表面的生活期計算 37 第二節 吸附氫鑽石表面之探討 39 3-2.1 吸附氫鑽石(111)表面的生活期計算 39 3-2.2 吸附氫鑽石(110)表面的生活期計算 42 3-2.3 吸附氫鑽石(100)表面的生活期計算 43 3-2.4 吸附氫鑽石表面生活期在三種單晶表面上的比較 45 3-2.5 溫度對吸附氫鑽石單晶表面的生活期影響 46 3-2.6 傳遞C-H延展振動模能量的可能途徑 47 3-2.7 吸附氘鑽石表面的生活期計算 48 第三節 G-matrix在半導體表面上能量傳遞的計算 51 3-3.1 水分子振動模能量變化 52 3-3.2 吸附氫半導體表面振動模能量變化 53 第四章 結論 56 4-1 研究結論 56 4-2 未來目標 57 第五章 參考文獻 59

    第五章 參考文獻
    A. Laubereau and W. Kaiser, Rev. Mod. Phys. 1978, 50, 607.
    E. Weitz and G. Flynn, Ann. Rev. Phys. Chem. 1974, 25, 275.
    A. Laubereau and W. Kaiser, Ann. Rev. Phys. Chem. 1975, 26, 83.
    D. W. Oxtoby, Ann. Rev. Phys. Chem. 1981, 32, 77.
    E. J. Heilweil, M. P. Casassa, R. R. Cavanagh and J. C. Stephenson, Ann. Rev. Phys. Chem. 1989, 40, 143.
    R. J. Dwayne Miller, Ann. Rev. Phys. Chem. 1991, 42, 581.
    J. C. Owrutsky, Ann. Rev. Phys. Chem. 1994, 45, 519.
    Y. J. Chabal, Surf. Sci. Repts. 1988, 8, 211.
    Y. R. Shen, Nature 1989, 337, 519.
    J. T. Yardley, Introduction to Molecular Energy Transfer, 1980, Academic Press, New York.
    E. B. Wilson, Jr. J. C. Decius and P. C. Cross, Molecular Vibrations 1980, Dover, New York.
    J. C. Tully, J. Electron Spectrosc. Relat. Phenom. 1990, 54/55, 1.
    S. Ormonde, Rev. Mod. Phys. 1975, 47, 193.
    R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemcial Reactivity 1987, Oxford University Press.
    D. Rapp and T. Kassel, Chem. Rev. 1969, 69, 61.
    R. N. Schwartz, Z. I. Slawsky and K. F. Herzfeld, J. Chem. Phys. 1952, 20, 1591.
    D. W. Noid, M. L. Koszykowski and R. A. Marcus, Ann. Rev. Phys. Chem. 1981, 32, 267.
    R. E. Wyatt, J. Chem. Phys. 1998, 109, 10732.
    T. J. Minehardt, J. D. Adcock and R. E. Wyatt, J. Chem. Phys. 1999, 110, 3326.
    T. J. Minehardt, J. D. Adcock and R. E. Wyatt, Chem. Phys. Lett. 1999, 303, 537.
    D. S. Tinti and G. W. Robinson, J. Chem. Phys. 1968, 49, 3229.
    D. J. Diestler, J. Chem. Phys. 1974, 60, 2692.
    S. H. Lin, H. P. Lin and D. Knittel, J. Chem. Phys. 1976, 64, 441.
    S. H. Lin, J. Chem. Phys. 1976, 65, 1053.
    A. Laubereau, S. F. Fischer, K. Spanner and W. Kaiser, Chem. Phys. 1978, 31, 335.
    A. Laubereau, D. von der Linde and W. Kaiser, Phys. Rev. Lett. 1972, 28, 1162.
    W. M. Madigosky and T. A. Litovitz, J. Chem. Phys. 1961, 34, 489.
    R. P. Chin, X. Blas?, Y. R. Shen and S. G. Louie, Europhys. Lett. 1995, 30, 399.
    J. -C. Lin, K. -H. Chen, H. -C. Chang, C. -S. Tsai, C. -E. Lin and K. H. Wang, J. Chem. Phys. 1996, 105, 3975.
    P. Guyot-Sionnest, Phys. Rev. Lett. 1991, 66, 1489.
    P. Guyot-Sionnest, P. H. Lin and E. M. Hiller, J. Chem. Phys. 1995, 102, 4269.
    C. S. Tsai, C. E. Lin, J. C. Lin and J. K. Wang, Chem. Phys. Lett. 1998, 295, 509.
    Y. J. Chabal, Surf. Sci. 1986, 168, 594.
    S. A. Adelman and B. J. Garrison, J. Chem. Phys. 1976, 65, 3751.
    J. C. Tully, J. Chem. Phys. 1980, 73, 1975.
    A. Nitzan and J. C. Tully, J. Chem. Phys. 1983, 78, 3959.
    F. E. Figueirido and R. M. Levy, J. Chem. Phys. 1992, 97, 703.
    Y. C. Sun, H. Gai and G. A. Voth, . J. Chem. Phys. 1994, 100, 3247
    H. Gai and G. A. Voth, . J. Chem. Phys. 1993, 99, 740.
    Y. C. Sun, H. Gai and G. A. Voth, . Chem. Phys. 1996, 205, 11.
    Y. C. Sun and J. M. Chen, J. Phys. Chem. B 1997, 101, 7082.
    D. M. Leitner, Phys. Rev. Lett. 2001, 87, 188102.
    K. Moritsugu, O. Miyashita and A. Kidera, Phys. Rev. Lett. 2000, 85, 3970.
    J. W. Gadzuk and A. C. Luntz, Surf. Sci. 1984, 144, 429.
    R. K. Wangsness and F. Bloch, Phys. Rev. 1953, 89, 728.
    J. M. Jean, R. A. Friesner and G. R. Fleming, J. Chem. Phys. 1992, 96, 5827.
    H. F, Lu, M. H. Ho, S. C. Hong, A. H. Liu, P. F. Wu and Y. C. Sun, J. Chem. Phys. 1998, 109, 6898.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, 1986, Cambridge University, New York.
    J. Shoemarker, L. W. Burggraf and M. S. Gordon, J. Chem. Phys. 2000, 112, 2994.
    D. R. Alfonso, D. A. Drabold and S. E. Ulloa, Phys. Rev. B 1995, 51, 14669.
    J. E. Northrup, Phys. Rev. B 1991, 44, 1419.
    K. S. Smirnov and G. Ras,eev, Surf. Sci. 2000, 459, 124.
    Y. J. Chabal, Journal of Molecular Structure 1993, 292, 65.
    T. ANgot, D. Bolmont, J. J. Koulmann, Surf. Sci. 1996, 352-354, 401.
    R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang and H. Seki, Phys. Rev. B 1995, 52, 5985.
    W. Weber, Phys. Rev. B 1977, 15, 4789.
    B. M. Rice, L. M. Raff and D. L. Thompson, Surf. Sci. 1988, 198, 360.
    J. C. Decius, J. Chem. Phys. 1948, 16, 1025.
    H. W. Schranz and M. A. Collins, J. Chem. Phys. 1993, 98, 1132.
    B. N. J. Persson and Ph. Avouris, Surf. Sci. 1997, 390, 45.
    R. Tubino, L. Piseri and G. Zerbi, J. Chem. Phys. 1972, 56, 1022.
    K. S. Smoirnov, V. A. Ermoshin and D. Bougeard, Chem. Phys. 1998, 230, 57.
    L. V. Zhigilei, D. Srivastava, B. J. Garrison, Surf. Sci. 1997, 374, 333.
    Y. C. Sun, H. F. Lu and M. H. Ho, Chem. Phys. Lett. 2000, 318, 7.
    H. C. Chang, J. C. Lin, J. Y. Wu and K. H. Chen, J. Phys. Chem. 1995, 99, 11081.

    無法下載圖示
    QR CODE