研究生: |
何明勳 Ming-Hsun Ho |
---|---|
論文名稱: |
吸附氫矽鑽石(100),(110),(111)表面上氫振動模能量弛緩速率之理論研究 Theoretical studies of vibrational energy relaxation of X-H stretching modes on hydrogen covered silicon and diamond (100), (111) and (110) surfaces |
指導教授: |
孫英傑
Sun, Ying-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 振動能量弛緩 、吸附氫表面 、矽 、鑽石 、分子模擬 |
英文關鍵詞: | vibrational energy relaxation, hydrogen covered, silicon, diamond, molecular dynamic |
論文種類: | 學術論文 |
相關次數: | 點閱:302 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用分子模擬結合Bloch-Redfield能量弛緩理論,計算吸附氫物種的矽及鑽石表面上,包含三種最簡單表面:(100)、(111)及(110),Si-H及C-H延展振動模的生活期值。理論計算結果和實驗值對照相當一致。Si-H振動模在Si(100)-2x1:H表面上的生活期較實驗值稍短的原因是重構後表面原子間作用力明顯改變所致。在吸附氫鑽石表面上,和之前的分子模擬結果相比,選用不同的位能表示式時,對C-H延展振動模生活期的影響並不會很大。另外並比較及探討溫度對生活期的影響,大致上均遵循Fermi Golden Rule的法則。由力-力自相關函數之傅立葉轉換圖中可知,Si-H及C-H振動模能量主要經由緊鄰的Si-Si-H及C-C-H彎曲振動模傳遞出去。在低溫下直接計算C-H延展振動模及C-C-H彎曲振動模能量隨時間變化的關係,支持了這項觀點。
Molecular dynamics simulation for three simple hydrogen-covered silicon and diamond surfaces, (100), (111) and (110) surfaces, were carried out to calculate the vibrational energy relaxation rates of Si-H and C-H stretches based on Bloch-Redfield theory. The calculated lifetimes on these surfaces were found to be in good agreement with experiment results. Lifetime of Si-H stretching mode on the Si(100)-2x1:H surface was slightly shorter than the experiment result due to surface reconstruction of this surface. Compared with previous MD simulations, the lifetimes of C-H stretching modes on diamond surfaces do not differ significantly from previous results when different bulk potential energy form was used. Besides the computations of the lifetime at room temperature, the results at higher temperature are reported and discussed as well. The temperature dependence results can be described approximately by the temperature dependence based on the Fermi Golden Rule. Analysis of the power spectrum of the fluctuating force along Si-H bond and C-H bond suggested that the dominate energy relaxation pathway on Si(100) and C(100) surfaces is through the couplings to the neighbor Si-Si-H bends and C-C-H bends, respectively. Direct calculation of the energies for the C-H bonds and C-C-H bends at low temperature strongly supports this energy relaxation mechanism.
第五章 參考文獻
A. Laubereau and W. Kaiser, Rev. Mod. Phys. 1978, 50, 607.
E. Weitz and G. Flynn, Ann. Rev. Phys. Chem. 1974, 25, 275.
A. Laubereau and W. Kaiser, Ann. Rev. Phys. Chem. 1975, 26, 83.
D. W. Oxtoby, Ann. Rev. Phys. Chem. 1981, 32, 77.
E. J. Heilweil, M. P. Casassa, R. R. Cavanagh and J. C. Stephenson, Ann. Rev. Phys. Chem. 1989, 40, 143.
R. J. Dwayne Miller, Ann. Rev. Phys. Chem. 1991, 42, 581.
J. C. Owrutsky, Ann. Rev. Phys. Chem. 1994, 45, 519.
Y. J. Chabal, Surf. Sci. Repts. 1988, 8, 211.
Y. R. Shen, Nature 1989, 337, 519.
J. T. Yardley, Introduction to Molecular Energy Transfer, 1980, Academic Press, New York.
E. B. Wilson, Jr. J. C. Decius and P. C. Cross, Molecular Vibrations 1980, Dover, New York.
J. C. Tully, J. Electron Spectrosc. Relat. Phenom. 1990, 54/55, 1.
S. Ormonde, Rev. Mod. Phys. 1975, 47, 193.
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemcial Reactivity 1987, Oxford University Press.
D. Rapp and T. Kassel, Chem. Rev. 1969, 69, 61.
R. N. Schwartz, Z. I. Slawsky and K. F. Herzfeld, J. Chem. Phys. 1952, 20, 1591.
D. W. Noid, M. L. Koszykowski and R. A. Marcus, Ann. Rev. Phys. Chem. 1981, 32, 267.
R. E. Wyatt, J. Chem. Phys. 1998, 109, 10732.
T. J. Minehardt, J. D. Adcock and R. E. Wyatt, J. Chem. Phys. 1999, 110, 3326.
T. J. Minehardt, J. D. Adcock and R. E. Wyatt, Chem. Phys. Lett. 1999, 303, 537.
D. S. Tinti and G. W. Robinson, J. Chem. Phys. 1968, 49, 3229.
D. J. Diestler, J. Chem. Phys. 1974, 60, 2692.
S. H. Lin, H. P. Lin and D. Knittel, J. Chem. Phys. 1976, 64, 441.
S. H. Lin, J. Chem. Phys. 1976, 65, 1053.
A. Laubereau, S. F. Fischer, K. Spanner and W. Kaiser, Chem. Phys. 1978, 31, 335.
A. Laubereau, D. von der Linde and W. Kaiser, Phys. Rev. Lett. 1972, 28, 1162.
W. M. Madigosky and T. A. Litovitz, J. Chem. Phys. 1961, 34, 489.
R. P. Chin, X. Blas?, Y. R. Shen and S. G. Louie, Europhys. Lett. 1995, 30, 399.
J. -C. Lin, K. -H. Chen, H. -C. Chang, C. -S. Tsai, C. -E. Lin and K. H. Wang, J. Chem. Phys. 1996, 105, 3975.
P. Guyot-Sionnest, Phys. Rev. Lett. 1991, 66, 1489.
P. Guyot-Sionnest, P. H. Lin and E. M. Hiller, J. Chem. Phys. 1995, 102, 4269.
C. S. Tsai, C. E. Lin, J. C. Lin and J. K. Wang, Chem. Phys. Lett. 1998, 295, 509.
Y. J. Chabal, Surf. Sci. 1986, 168, 594.
S. A. Adelman and B. J. Garrison, J. Chem. Phys. 1976, 65, 3751.
J. C. Tully, J. Chem. Phys. 1980, 73, 1975.
A. Nitzan and J. C. Tully, J. Chem. Phys. 1983, 78, 3959.
F. E. Figueirido and R. M. Levy, J. Chem. Phys. 1992, 97, 703.
Y. C. Sun, H. Gai and G. A. Voth, . J. Chem. Phys. 1994, 100, 3247
H. Gai and G. A. Voth, . J. Chem. Phys. 1993, 99, 740.
Y. C. Sun, H. Gai and G. A. Voth, . Chem. Phys. 1996, 205, 11.
Y. C. Sun and J. M. Chen, J. Phys. Chem. B 1997, 101, 7082.
D. M. Leitner, Phys. Rev. Lett. 2001, 87, 188102.
K. Moritsugu, O. Miyashita and A. Kidera, Phys. Rev. Lett. 2000, 85, 3970.
J. W. Gadzuk and A. C. Luntz, Surf. Sci. 1984, 144, 429.
R. K. Wangsness and F. Bloch, Phys. Rev. 1953, 89, 728.
J. M. Jean, R. A. Friesner and G. R. Fleming, J. Chem. Phys. 1992, 96, 5827.
H. F, Lu, M. H. Ho, S. C. Hong, A. H. Liu, P. F. Wu and Y. C. Sun, J. Chem. Phys. 1998, 109, 6898.
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, 1986, Cambridge University, New York.
J. Shoemarker, L. W. Burggraf and M. S. Gordon, J. Chem. Phys. 2000, 112, 2994.
D. R. Alfonso, D. A. Drabold and S. E. Ulloa, Phys. Rev. B 1995, 51, 14669.
J. E. Northrup, Phys. Rev. B 1991, 44, 1419.
K. S. Smirnov and G. Ras,eev, Surf. Sci. 2000, 459, 124.
Y. J. Chabal, Journal of Molecular Structure 1993, 292, 65.
T. ANgot, D. Bolmont, J. J. Koulmann, Surf. Sci. 1996, 352-354, 401.
R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang and H. Seki, Phys. Rev. B 1995, 52, 5985.
W. Weber, Phys. Rev. B 1977, 15, 4789.
B. M. Rice, L. M. Raff and D. L. Thompson, Surf. Sci. 1988, 198, 360.
J. C. Decius, J. Chem. Phys. 1948, 16, 1025.
H. W. Schranz and M. A. Collins, J. Chem. Phys. 1993, 98, 1132.
B. N. J. Persson and Ph. Avouris, Surf. Sci. 1997, 390, 45.
R. Tubino, L. Piseri and G. Zerbi, J. Chem. Phys. 1972, 56, 1022.
K. S. Smoirnov, V. A. Ermoshin and D. Bougeard, Chem. Phys. 1998, 230, 57.
L. V. Zhigilei, D. Srivastava, B. J. Garrison, Surf. Sci. 1997, 374, 333.
Y. C. Sun, H. F. Lu and M. H. Ho, Chem. Phys. Lett. 2000, 318, 7.
H. C. Chang, J. C. Lin, J. Y. Wu and K. H. Chen, J. Phys. Chem. 1995, 99, 11081.