研究生: |
陳致豪 Chen, Jhih-Hao |
---|---|
論文名稱: |
低場磁振造影於生物組織影像之特性研究 The Characteristic Study of Bioimaging via Low-field Magnetic Resonance Imaging |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 低場磁振造影 、超導量子干涉元件 、預先極化技術 |
英文關鍵詞: | Low-field MRI, SQUID, Pre-polarization technique |
DOI URL: | https://doi.org/10.6345/NTNU202202876 |
論文種類: | 學術論文 |
相關次數: | 點閱:94 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究結合了超導量子干涉元件(Superconducting quantum interference device, SQUID )磁性量測技術,並使用預先極化技術提升磁矩的磁化率,在鋁屏蔽屋裡建造低場磁振造影系統(Low-field MRI)。為了降低地球磁場對系統的影響,設計了一對地球磁場補償線圈,用來抵銷地球磁場的垂直分量,並旋轉系統主磁場方向與地球磁場的水平分量平行,藉此方便調整主磁場的強度,最後使用三個方向的梯度線圈,使磁場均勻度提升,以及造影所需頻率、相位編碼之應用。
在磁振造影部分,藉由改變系統的共振頻率,以及梯度磁場的造影序列,我們大幅提升了訊雜比(signal-to-noise ratio, SNR),原本的SNR由213.15提升至533.14,影像品質進而提升許多。
為了驗證低場磁振造影系統應用的可行性,我們造影出清晰的蔬果結構性影像,並藉由水果二維與三維的磁振造影,可以判斷水果損傷的確切位置。在生醫方面的應用,我們進行手臂的磁振造影,也能夠得到結構性影像;豬肉的磁振造影也能觀察到輪廓,初步驗證本研究之低場磁振造影系統,做為生物醫學應用的可行性,此外系統造價成本及維護費用低廉,極具產業化的價值與潛力。
關鍵字:低場磁振造影、超導量子干涉元件、預先極化技術
Abstract
In this study, the low-field magnetic resonance imaging (MRI) system exploits the pre-polarization technique to enhance the magnetic moment and superconducting quantum interference device (SQUID) for data capture. The magnetic field coils and SQUID were set up inside a shielded room and a shielded cylinder which were made out of aluminum to reduce the surrounding noise. We also designed a pair of coils to cancel the Earth's magnetic field for reducing the ambient noise. The three pairs of gradient coils were employed to improve the magnetic field uniformity. By modulating the resonance frequency and image sequence, the quality of magnetic resonance image and signal-to-noise ratio has been optimized. The feasibility of biomedical applications, such as arm imaging and fruit damage was demonstrated. Furthermore, the cost of this system is pretty low. The low-field MRI has high potential of industrialization.
Key words: Low-field MRI, SQUID, Pre-polarization technique
參考資料
[1] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer “Theory of spin-exchange optical pumping of 3He and 129Xe”, Phys. Rev. A 58, 1412 (1998).
[2] Shu-Hsien Liao, Kai-Wen Huang, Hong-Chang Yang*, Chang-Te Yen, M. J. Chen, Hsin-Hsien Chen, Herng-Er Horng*, and Shieh Yueh Yang, “Characterization of tumors using SQUID-detected nuclear magnetic resonance and imaging”,Appl. Phys. Lett. 97, 263701 (2010)
[3] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI ”,Magn.Reson. Imaging 23, 153 (2005)
[4] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
[5] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
[6] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
[7] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
[8] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
[9] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
[10] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
[11] Y. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys., vol. 70, 175(2002.)
[12] R. McDermott, A. H. Trabesinger, M. Mück, E. L. Haln, A. Pines, and J. Clarke, “Liquid-state NMR and scalar couplings in microtesla magnetic fields,” Science, vol. 295, 2247( 2002.)
[13] Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms,“Liquid state nuclear magnetic resonance at low fields using a nitrogencooled superconducting quantum interference device,” Appl. Phys. Lett.,vol. 90,182503(2007)
[14] K. Schlenga, R. McDermott, J. Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high- Tc dc superconducting quantum interference device,” Appl. Phys. Lett., vol. 75,3695(1999)
[15] H. C. Yang, S. H. Liao, H. E. Horng, S. L. Kuo, H. H. Chen, and S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device,” Appl. Phys. Lett., vol. 88,252505( 2006.)
[16] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range,” App. Phys. Lett., vol. 87, 054103(2005.)
[17] L. Qiu, Y. Zhang, H. J. Krause, A. H. Braginski, M. Burghoff, and L. Trahms, “Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device,”Appl. Phys. Lett., vol. 91, 072505(2007.)
[18] S. H. Liao, H. E. Horng, H. C. Yang, and S. Y. Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetometer,” J. Appl. Phys., vol. 102, 033914(2007.)
[19] J. Clarke, M. Hatridge, and M. Mößle, “Resonance imaging in Microtesla,” Annu. Biomed. Eng., vol. 9,389( 2007.)
[20] S. H. Liao, H. C. Yang, H. E. Horng, S. Y. Yang, H. H. Chen,D. W. Hwang, and L. P. Hwang, “Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas,” Supercond. Sci. Technol., vol. 22,045008(2009)
[21] S. H. Liao, H. C. Yang, H. E. Horng, and S. Y. Yang, “Characterization of magnetic nanoparticles as contrast agents in magnetic resonance imaging using high-Tc superconducting quantum interference devices in microtesla magnetic fields,” Supercond. Sci. Technol., vol. 22, 025003(2009).
[22] H. C. Seton, J.S.M. Hutchison, D. M. Busell, “A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm”,Meas. Sci. Technol. 8, 198 (1997).
[23] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, “Nuclear magnetic resonance using a high temperature superconducting quantum interference device”Appl. Phys. Lett. 70, 1037 (1997).
[24] S. Kumar, W. F. Avrin, B. R. Whitecotton, “NMR of room temperature samples with a flux-locked dc SQUID" IEEE Trans. Magn. 32, 5261 (1996).
[25] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, “Low-Field Magnetic Resonance Imaging with a High-Tc dc Superconducting Quantum Interference Device," Appl. Phys. Lett. 75, 3695 (1999).
[26] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, “Nuclear magnetic resonance with DC SQUID preamplifiers”IEEE Trans. Magn, vol. 25,1193(1989)
[27] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. “SQUID-based simultaneous detection of NMR and biomagnetic signals at ultra-low magnetic fields" IEEE Trans. Appl. Supercon. 15, 635 (2005).
[28] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range",Appl. Phys. Lett. 87, 054103 (2005)
[29] W. Myers, D. Slichter, M. Hatridge, S. Busch, M. Mößle, R. McDermott,A. Trabesinger, and J. Clarke, “Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T,” J. Magn. Reson., vol. 186, 182, 2007.
[30] V. S. Zotev, A. N. Matlachov, P. L. Volegov, H. J. Sandin, M. A. Espy,J. C. Mosher, A. V. Urbaitis, S. G. Newman, and R. H. Kraus, “Multichannel SQUID system for MEG and ultra-low-field MRI,” IEEE Trans.Appl. Supercond., vol. 17, 839, 2007.
[31] M .A. Bernstein, K. F. King and X. J. Zhou, “Handbook of MRI Pulse Sequences." Elsevier Academic Press, 960 (2004)
[32] Joseph P. Hornak, Ph.D. (1996-2011),The Basics of MRI, 2013年7月3日取自於http://www.cis.rit.edu/htbooks/mri/
[33] FMosher, Robert H. Kraus Jr. “Parallel MRI at microtesla fields”, Journal of Magnetic Resonance 192 ,197(2008)
[34] Vadim S. Zotev *, Petr L. Volegov, Andrei N. Matlashov, Michelle A. Espy, John C. Mosher, Robert H. Kraus Jr. “Parallel MRI at microtesla fields”, Journal of Magnetic Resonance 192 ,197(2008)
[35] S. Godefroy, M. Fleury, F. Deflandre, and J.-P. Korb, “Temperature Effect on NMR Surface Relaxation in Rocks for Well Logging Applications "J. Phys. Chem. B,106 , 11183-11190 (2002)
[36] Ray H. Hashemi, William G. Bradley, Christopher J. Lisanti (2004)。《基礎磁振造影》。莊奇容。台北市:合記圖書出版社。
[37] 吳沛哲(2016)。《大型超低場磁振造影系統架設與特性研究》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北市。
[38] 手臂核磁共振影像,取自https://www.imaios.com/cn/e-Anatomy/node_49403/MRI