研究生: |
林昱欣 Lin, Yu-Shin |
---|---|
論文名稱: |
運用眼球追蹤法探索高中學生之論證架構理解與論證表現及科學認識信念之關係 Using eye tracking to explore how high school students' understanding of argument structure and argument performance are associated with epistemic beliefs in science |
指導教授: |
楊芳瑩
Yang, Fang-Ying |
口試委員: |
楊芳瑩
Yang, Fang-Ying 許衷源 Hsu, Chung-Yuan 李旻憲 Lee, Min-Hsien |
口試日期: | 2023/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 眼球追蹤技術 、科學認識信念 、科學辯證信念 、先備知識 、科學論證 |
英文關鍵詞: | eye-tracking technology, scientific epistemic beliefs, scientific justification beliefs, prior knowledge, scientific argumentation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301712 |
論文種類: | 學術論文 |
相關次數: | 點閱:83 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣十二年國民基本教育課程綱要(以下簡稱108課綱)期望培養學生「帶著走的能力」,其中自然領綱中加強了對於「科學論證」的重要性,其目的是希望學生透過在科學教育中的學習,能夠獲得「靠證據說話」的技能,強調科學中證據及證據如何支持主張的重要性。
本研究利用眼球追蹤技術探討臺灣首都臺北市某公立高中三年級學生40位,於論證架構訓練後,是否能區辨科學文本文中Toulmin(1958)所提出的TAP(Toulmin Argumentation Pattern)論證元素,並進一步探索閱讀歷程、先備知識、科學辯證信念與辨認論證架構的關係。研究中先以問卷收集受試者的科學認識信念,接著以測驗卷檢驗受試者先備知識,然後讓學生閱讀論證架構說明文,再以改寫自《科學人》的閱讀材料檢測學生的論證元素區辨表現,並進行眼球追蹤實驗,以Tobbi-4C眼動儀紀錄受試者的閱讀歷程,最後以開放式問答題觀察學生是否能針對文本內容進行論證。此外,為了釐清論證架構說明文的介入效果,本研究操弄論證架構說明文內容,一組學生單純閱讀論證元素,另一組學生則閱讀論證元素加上論證分析範例。
本研究使用共變異數分析(ANCOVA)檢驗論證架構說明文中,「有無分析範例」的表現與學生先備知識是否產生交互作用,接著使用無母數U檢定(Mann-Whitney U Test)比較兩組之間的論證元素區辨表現差異;最後將受試者進行論證的答案進行編碼並評分,然後將編碼結果以及受試者論證區辨正確率與科學認識信念、閱讀歷程進行相關性分析(Spearman Correlation)。
研究結果顯示,「有無分析範例」與學生先備知識並無交互作用,並且兩組的受試者在區辨TAP要素的表現並無顯著差異。受試者的論證要素區辨能力與先備知識的高低有關,也與持有科學認識信念中的權威辯證信念及多元來源辯證信念有關,並且在眼動指標中的總注視時間、平均注視時間、首次閱讀時間也有關。同時受試者進行論證的表現與眼動指標中的首次閱讀時間有關。
The 12-year National Basic Education Curriculum Outline (referred to as the 108 Guidelines) of Taiwan aims to cultivate students’ “ability to apply what they have learned”. In the “Domain of Natural Science”, the importance of “scientific reasoning” is emphasized. The goal is for students to develop the skill of “speaking with evidence” through scientific education, highlighting the significance of evidence and how it supports claims in science. This research employs eye-tracking technology to explore whether 12th-grade students from a public high school in Taipei City, Taiwan, can identify the Toulmin Argumentation Pattern (TAP) elements proposed by Toulmin (1958) in scientific texts after receiving an online training about the TAP framework. Additionally, the study investigates the relationships among reading processes, prior knowledge, scientific epistemic beliefs, and the recognition of TAP structure and elements.
The research began by collecting participants’ scientific epistemic beliefs through questionnaires, followed by assessing their prior knowledge using a multiple-choice test. Students then were given the online TAP training. Afterward, they were led to read an science article adopted from "Scientific American" and asked to identify the TAP elements in the text. During reading, the Tobii-4C eye tracker was used to record participants' reading processes. Finally, open-ended questions were used to evaluate students' ability to perform argumentation. To gauge the intervention effect of the TAP training, the study manipulated the content—students either read TAP structure alone or with an added example of the analysis for TAP elements.
The research employed Analysis of Covariance (ANCOVA) to examine the interaction between performance of identifying TAP element under different conditions of TAP training and the extent of students’ prior knowledge. Furthermore, the Mann-Whitney U Test was utilized to compare the performance differences in identifying TAP elements between the two groups. Participants' argumentation responses were encoded, scored, and then correlated with their accuracy in recognizing TAP elements, scientific epistemic beliefs, and reading processes using Spearman Correlation.
The findings revealed that the "presence of analysis examples" did not interact with students' prior knowledge, and there was no significant difference in the performance of TAP element discernment between the two groups. Participants' ability to distinguish TAP elements was related to their prior knowledge, epistemic beliefs about justification by authority and justification by multiple sources. Additionally, total fixation time, average fixation time, and first-pass time in eye-tracking metrics were related to the participants' performance. The ability to perform argumentation was found to be also associated with the first-pass time in eye-tracking metrics.
王孜甯、簡郁芩(2022)。 科學圖文閱讀眼動研究之系統回顧。教育心理學報,53(4),773-799。
王琇怜(2015)。以眼球追蹤技術探討先備知識、閱讀歷程以及科學閱讀理解的關係。國立臺灣師範大學科學教育研究所碩士班碩士論文。
何宗懿(2015)。閱讀者提問請教文本:試論 PISA 閱讀素養架構進階之道。教育研究與發展期刊,11(2),1-31。
林孜蓉(2006)。論辯與主張的權威性對知識探究之影響。國立交通大學工業工程管理學系碩士論文。
林志能、洪振方(2008)。論證模式分析及其評量要素。科學教育月刊,312, 2-18。
林美馨(2011)。國小學童認識信念、科學文本理解與推論能力之相關研究。國立台灣師範大學地球科學研究所博士論文。
林美馨、楊芳瑩(2011)。由認識觀發展的角度探討國小學童對科學探究過程之看法。科學教育學刊,19(6),531-548。
邱美虹(2018)。以科學素養為導向的新課綱-從社會性科學議題融入課程談起。臺灣教育評論月刊,7(10), 1-7。
張芬芬(2019)。 十二年國教的統整課程與分科課程:對立?取代?互補?。臺灣教育評論月刊,8(1),195-200。
教育部(2014)。十二年國民基本教育課程綱要。臺北市:教育部。
教育部(2018)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
陳木金、許瑋珊 (2012)。從 PISA 閱讀評量的國際比較探討閱讀素養教育的方向。教師天地,181,4-15。
陳如嫣(2010)。探討知識信念與閱讀任務對多文本閱讀之影響。國立中央大學學習與教學研究所碩士論文。
陳柏霖、洪兆祥、余民寧 (2013)。網路閱讀態度、網路閱讀行為及網路閱讀素養之橫斷面研究。教育科學研究期刊,58(3),23-50。
陳瑩(2011)。自然史博物館策展人員資訊行為之研究。臺灣師範大學圖書資訊學研究所在職進修碩士班學位論文。
陳憶寧(2011)。當科學家與記者相遇:探討兩種專業對於科學新聞的看法差異。中華傳播學刊,19,147-187。
湯宜佩、張文馨、許瑛玿(2021)。針對高中科學論證教學研究回顧與評析。教育科學研究期刊,66(4),217-243。
黃翎斐、胡瑞萍(2006)。論證與科學教育的理論和實務。科學教育月刊,292,15-28。
塗鎭嘉(2019)。以眼球追蹤法分析高中地球科學圖像閱讀歷程與概念理解以全球氣候變遷主題為例。國立臺灣師範大學科學教育研究所碩士班碩士論文。
楊子潔(2022)。運用眼球追蹤法分析論證架構的閱讀及元素區辨與科學認識信念之關係。國立臺灣師範大學理學院科學教育研究所碩士論文。
劉佩雲(2009) 課室結構知覺對科學知識信念、學習成就與迷思概念的影響。課程與教學,12(2),135-159。
劉湘瑤、李麗菁、蔡今中(2007)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15(3),335-356。
鄧宗聖(2019)。公眾理解科學的研究回顧與展望。科學教育,5,41-61。
鄭可萱、李松濤(2018)。當科學素養與閱讀素養相遇:高中學生科學新聞閱讀策略之實驗研究。教育科學研究期刊,63(4),157-192。
盧奕文(2016)。探討科學閱讀融入教學對國中學生在「熱的傳播方式」學習成尌、概念理解和對理化課學習態度的影響。國立清華大學數理教育研究所科學教育教學碩士班碩士論文。
謝依婷(2011)。論證教學對國小五年級學童論證能力與科學創造力之影響。國立臺灣海洋大學教育研究所碩士學位論文。
蘇心屏(2022)。主張-證據-推理(Claim-Evidence-Reasoning, CER)鷹架教學對於國小學童科學閱讀理解影響之研究。國立臺中教育大學科學教育與應用學系暑期在職進修專班碩士論文。
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: A critical review of the literature. International journal of science education, 22(7), 665-701.
Altan, T., & Cagiltay, K. (2022). An Eye Tracking Based Investigation of Multimedia Learning Design in Science Education Textbooks. Educational Technology & Society, 25(2), 48-61.
Andersen, H., & Hepburn, B. (2013). Scientific change. https://iep.utm.edu/scientific-change/
Bråten, I., Ferguson, L. E., Anmarkrud, Ø., Strømsø, H. I., & Brandmo, C. (2014).
Modeling relations between students’ justification for knowing beliefs in science, motivation for understanding what they read in science, and science achievement. International Journal of Educational Research, 66, 1-12.
Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2013). Justification beliefs and multiple-documents comprehension. European Journal of Psychology of Education, 28(3), 879-902.
Brem, S. K., & Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive science, 24(4), 573-604.
Cai, Y., & Zhu, X. (2017). Learning strategies and reading literacy among Chinese and Finnish adolescents: evidence of suppression. Educational Psychology, 37(2), 192-204.
Chang, R.-C. & Tsai, M.-J.* (2022). Visual behavior patterns of successful decision makers in crime scene photo investigation: An eye tracking analysis. Journal of Forensic Sciences, 67(3), 1072-1083. https://doi.org/10.1111/1556-4029.14970
Chiou, G.-L., Hsu, C.-Y., & Tsai, M.-J.* (2022). Exploring how students interact with guidance in a physics simulation: Evidence from eye-movement and log data analyses. Interactive Learning Environments. 30(3), 484-497.
Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary educational psychology, 29(2), 186-204.
Craig, M. T., & Yore, L. D. (1995). Middle school students’metacognitive knowledge about science reading and science text: an interview study. Reading Psychology: An International Quarterly, 16(2), 169-213.
da Silva Soares Jr, R., Lukasova, K., Carthery-Goulart, M. T., & Sato, J. R. (2021). Student’s perspective and teachers’ metacognition: Applications of eye-tracking in education and scientific research in schools. Frontiers in psychology, 12, 673615.
Dimopoulos, K., & Koulaidis, V. (2003). Science and technology education for citizenship: The potential role of the press. Science Education, 87(2), 241-256.
Dimopoulos, K., Koulaidis, V., & Sklaveniti, S. (2003). Towards an analysis of visual images in school science textbooks and press articles about science and technology. Research in Science Education, 33(2), 189-216.
Dogusoy-Taylan, B., & Cagiltay, K. (2014). Cognitive analysis of experts’ and novices’ concept mapping processes: An eye tracking study. Computers in human behavior, 36, 82-93.
Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291.
Evans, K. K., Horowitz, T. S., Howe, P., Pedersini, R., Reijnen, E., Pinto, Y., ... & Wolfe, J. M. (2011). Visual attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 503-514.
Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science education, 89(2), 335-347.
Fang, Z., & Wei, Y. (2010). Improving middle school students’ science literacy through reading infusion. The Journal of Educational Research, 103(4), 262-273.
Flick, L. B., & Lederman, N. G. (2002). Finding opportunity to learn. School Science and Mathematics, 102(8), 377.
Flick, L. B., & Lederman, N. G. (2002). The value of teaching reading in the context of science and mathematics. School Science and Mathematics, 102(3), 105-107.
Fosnot, C. T. (1993). Learning to teach, teaching to learn: The center for constructivist teaching/teacher preparation project. Teaching Education, 5(2), 69-78.
Greene, J. A., Azevedo, R., & Torney-Purta, J. (2008). Modeling epistemic and ontological cognition: Philosophical perspectives and methodological directions. Educational Psychologist, 43(3), 142-160.
Haas, C., & Flower, L. (1988). Rhetorical reading strategies and the construction of meaning. College Composition and Communication, 39(2), 167-183.
Henderson, J. B., MacPherson, A., Osborne, J., & Wild, A. (2015). Beyond construction: Five arguments for the role and value of critique in learning science. International Journal of Science Education, 37(10), 1668-1697.
Heyne, N., Gnambs, T., Lockl, K., & Neuenhaus, N. (2023). Predictors of adolescents’ change in reading literacy: the role of reading strategies, reading motivation, and declarative metacognition. Current Psychology, 1-15.
Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International journal of science and mathematics education, 12(3), 525-554.
Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Educational psychology review, 353-383.
Hofer, B. K. (2004). Epistemological understanding as a metacognitive process: Thinking aloud during online searching. Educational psychologist, 39(1), 43-55.
Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of educational research, 67(1), 88-140.
Hofer, B. K., & Pintrich, P. R. (2012). Personal epistemology: The psychology of beliefs about knowledge and knowing. Routledge.
Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding students' attention via a model's eye movements fosters learning. Learning and Instruction, 25, 62-70.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: from eye fixations to comprehension. Psychological review, 87(4), 329.
Kind, P. E. R., & Osborne, J. (2017). Styles of scientific reasoning: A cultural rationale for science education?. Science education, 101(1), 8-31.
Knight, S., Buckingham Shum, S., & Littleton, K. (2013, April). Epistemology, pedagogy, assessment and learning analytics. In proceedings of the third international conference on learning analytics and knowledge, 75-84.
Koch, A., & Eckstein, S. G. (1995). Skills needed for reading comprehension of physics texts and their relation to problem‐solving ability. Journal of Research in Science Teaching, 32(6), 613-628.
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824.
Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., ... & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review, 10, 90-115.
Lee, Y. H. (2018). Scripting to enhance university students’ critical thinking in flipped learning: implications of the delayed effect on science reading literacy. Interactive Learning Environments, 26(5), 569-582.
Liu, Q. T., Liu, B. W., & Lin, Y. R. (2019). The influence of prior knowledge and collaborative online learning environment on students’ argumentation in descriptive and theoretical scientific concept. International Journal of Science Education, 41(2), 165-187.
Marschall, S., & Davis, C. (2012). A conceptual framework for teaching critical reading to adult college students. Adult learning, 23(2), 63-68.
Mason, L., Pluchino, P., & Tornatora, M. C. (2016). Using eye‐tracking technology as an indirect instruction tool to improve text and picture processing and learning. British Journal of Educational Technology, 47(6), 1083-1095.
Memisevic, H., & Cehic, I. (2022). The Importance of Metacognitive Strategies in Reading Literacy—Results of the PISA Testing in Bosnia and Herzegovina. Journal of Cognitive Education and Psychology, 21(2), 116-124.
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science education, 87(2), 224-240.
Ogino, R., Hayashi, Y., & Seta, K. (2017). Enhancing metacognitive inference activities using eye-movements on one’s academic paper [Paper presentation]. Workshop Proceedings of the 25th International Conference on Computers in Education. New Zealand: Asia-Pacific Society for Computers in Education, 460-470.
Oliveras, B., Márquez, C., & Sanmartí, N. (2014). Students’ attitudes to information in the press: critical reading of a newspaper article with scientific content. Research in Science Education, 44, 603-626.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-466.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of research in science teaching, 41(10), 994-1020.
Ozuru, Y., Dempsey, K., & McNamara, D. S. (2009). Prior knowledge, reading skill, and text cohesion in the comprehension of science texts. Learning and instruction, 19(3), 228-242.
Pande, P., & Chandrasekharan, S. (2014). Eye-tracking in STEM education research: limitations, experiences and possible extensions [Paper presentation]. IEEE sixth international conference on technology for education, 116-119.
Park, Y., & Lim, H. (2012). Meaning of epistemological belief through online communication: exploratory study. Procedia-Social and Behavioral Sciences, 46, 3254-3258.
Paulus, M., Proust, J., & Sodian, B. (2013). Examining implicit metacognition in 3.5-year-old children: An eye-tracking and pupillometric study. Frontiers in Psychology, 4, 145.
Probosari, R. M., Sajidan, S., Suranto, S., & Prayitno, B. A. (2022). Integrating reading as evidence to enhance argumentation in scientific reading-based inquiry: a design-based research in biology classroom. Jurnal Pendidikan IPA Indonesia, 11(1), 171-184.
Raz, J. (1985). Authority and justification. Philosophy & Public Affairs, 3-29.
Savoji, A. P., Niusha, B., & Boreiri, L. (2013). Relationship between epistemological beliefs, self-regulated learning strategies and academic achievement. Procedia-Social and Behavioral Sciences, 84, 1160-1165.
Schommer-Aikins, M. (2004). Explaining the epistemological belief system: Introducing the embedded systemic model and coordinated research approach. Educational psychologist, 39(1), 19-29.
Tsai, C. C., & Liu, S. Y. (2005). Developing a multi‐dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621-1638.
Tsai, M. J., Wu, A. H., Bråten, I., & Wang, C. Y. (2022). What do critical reading strategies look like? Eye-tracking and lag sequential analysis reveal attention to data and reasoning when reading conflicting information. Computers & Education, 187, 104544.
Tsai, P. Y., Yang, T. T., She, H. C., & Chen, S. C. (2019). Leveraging college students’ scientific evidence-based reasoning performance with eye-tracking-supported metacognition. Journal of Science Education and Technology, 28, 613-627.
Van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention guidance during example study via the model’s eye movements. Computers in Human Behavior, 25(3), 785-791.
Voss, J.F(2005). Toulmin’s Model and the Solving of Ill-Structured Problems. Argumentation 19, 321–329. https://doi.org/10.1007/s10503-005-4419-6
Wade, S. E., & Moje, E. B. (2000). An introduction to case pedagogies for teacher educators. Preparing teachers for inclusive education: Case pedagogies and curricula for teacher educators, 3-24.
Wang, J. R., Wang, Y. C., Tai, H. J., & Chen, W. J. (2010). Investigating the effectiveness of inquiry-based instruction on students with different prior knowledge and reading abilities. International Journal of Science and Mathematics Education, 8(5), 801-820.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967.
Wu, C. J., & Liu, C. Y. (2021). Eye-movement study of high-and low-prior-knowledge students’ scientific argumentations with multiple representations. Physical Review Physics Education Research, 17(1), 010125.
Yang, F. Y. (2017). Examining the reasoning of conflicting science information from the information processing perspective—an eye movement analysis. Journal of Research in Science Teaching, 54(10), 1347-1372.
Yang, F. Y., & Tsai, C. C. (2010). Reasoning about science-related uncertain issues and epistemological perspectives among children. Instructional Science, 38(4), 325-354.
Yang, F. Y., Bhagat, K. K., & Cheng, C. H. (2019). Associations of epistemic beliefs in science and scientific reasoning in university students from Taiwan and India. International Journal of Science Education, 41(10), 1347-1365.
Yang, F. Y., Chang, C. C., Chen, L. L., & Chen, Y. C. (2016). Exploring learners’ beliefs about science reading and scientific epistemic beliefs, and their relations with science text understanding. International Journal of Science Education, 38(10), 1591-1606.
Yore, L. D. , & Denning, D. (1989). Implementing change in secondary science yeading and textbook useage: A desired image, a current profile, and a plan for change.
Yore, L. D., & Shymansky, J. A. (1991). Reading in science: Developing an operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(1), 35-62.