研究生: |
林珏生 Lin, Yu-Sheng |
---|---|
論文名稱: |
缺血預處理對蹲舉運動表現之影響 The effect of ischemic preconditioning on squat performance |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 再灌流 、血流阻斷 、阻力運動 、熱身活動 |
英文關鍵詞: | reperfusion, blood flow occlusion, resistance training, warm up |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DPE.029.2018.F03 |
論文種類: | 學術論文 |
相關次數: | 點閱:289 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究旨在探討缺血預處理 (ischemic preconditioning, IPC) 對於具規律阻力訓練經驗者的平行蹲舉 (parallel squat) 運動表現之影響。方法:本研究共招募12名成年男性 (年齡,23 ± 2歲;身高,176 ± 7公分;體重,76 ± 15公斤;蹲舉最大肌力,125 ± 42公斤)。每位受試者需先進行2次控制處理 (CON),然後,再依隨機交叉之方式接受LIPC處理 (local IPC,加壓220 mmHg) 與SHAM處理 (加壓20 mmHg),其中LIPC與SHAM包含進行4個循環的5分鐘缺血與5分鐘再灌流。實驗處理結束後,受試者需在測力板上進行4組平行蹲舉測驗,負荷設定為60% 1 RM (repetition maximum, RM),並於第4組蹲舉測驗中,要求受試者盡可能多地實施蹲舉運動至衰竭。結果:LIPC在蹲舉測驗時的反覆次數 (LIPC vs. SHAM vs. CON, 23 ± 5 vs. 20 ± 4 vs. 19 ± 4下, p = .001) 及運動量 (LIPC vs. SHAM vs. CON, 1627.2 ± 527.3 vs. 1456.7 ± 488.2 vs. 1341.3 ± 428.2公斤, p = .001),均明顯高於其他實驗處理。在平均力量輸出、最大發力率與瞬時發力率方面,LIPC皆明顯高於CON (p < .05)。此外,在蹲舉測驗過程中的肌肉氧飽和度、血乳酸與運動強度自覺分數,在各實驗處理之間均無顯著差異。結論:LIPC能促進具有阻力訓練經驗者的蹲舉運動表現,然而,LIPC不會改變衰竭性蹲舉運動時的運動肌群血流量與氧飽和度。
Purpose: This study investigated the effect of ischemic preconditioning (IPC) on parallel squat performance in individuals with regular resistance training experiences. Methods: Twelve males were recruited [age, 23 ± 2 years; height, 176 ± 7 cm; body mass, 76 ± 15 kg; squat 1RM (repetition maximum), 125 ± 42 kg] in this study. All participants were required to conduct 2 control (CON) treatments, and then performed LIPC (local IPC, 220 mmHg) and SHAM (20 mmHg) treatments in randomized crossover design. The LIPC and SHAM included 4 cycles of 5-min ischemia and 5-min reperfusion. During the squat test, participants performed 4 sets of parallel squat at 60% 1RM on the force platform. At the fourth set, participants were asked to perform as many repetitions as possible until exhaustion. Results: The number of repetitions (LIPC vs. SHAM vs. CON, 23 ± 5 vs. 20 ± 4 vs. 19 ± 4 reps, p = .001) and exercise volume (LIPC vs. SHAM vs. CON, 1627 ± 527 vs. 1457 ± 488 vs. 1341 ± 428 kg, p = .001) in LIPC were significantly greater than the others. The average force, maximal and instantaneous rate of force development in LIPC were significantly higher than those in CON (p < .05). There were no significant differences in tissue saturation index, blood lactate concentration, and rating of perceived exertion during squat test among treatments. Conclusion: LIPC might improve the squat performance in resistance-trained individuals, however, LIPC would not change the blood flow and muscular oxygenation during exhaustive squat exercise.
Amann, M., Proctor, L. T., Sebranek, J. J., Pegelow, D. F., & Dempsey, J. A. (2009). Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. The Journal of Physiology, 587(1), 271-283. doi: 10.1113/jphysiol.2008.163303
Amann, M., Runnels, S., Morgan, D. E., Trinity, J. D., Fjeldstad, A. S., Wray D. W., … Richardson, R. S. (2011). On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. The Journal of Physiology, 589(15), 3855-3866. doi: 10.1113/jphysiol.2011.209353
Barcroft, H., Lind, A. R., & Petrofsky, J. S. (1978). The lack of influence of reactive hyperemia on exhausting rhythmic or static exercise. European Journal of Applied Physiology, 38(1), 49-54.
Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine and Science in Sports and Exercise, 44(11), 2084-2089. doi: 10.1249/MSS.0b013e318262cb17
Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., & Thijssen, D. H. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American Journal of Physiology-Heart and Circulatory Physiology, 303(5), 533-538. doi: 10.1152/ajpheart.00272.2012
Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine and Science in Sports, 25(3), 356-364. doi: 10.1111/sms.12229
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
Cheung, M. M., Kharbanda, R. K., Konstantinov, I. E., Shimizu, M., Frndova, H., Li, J., … Redington, A. N. (2006). Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: First clinical application in humans. Journal of the American College of Cardiology, 47(11), 2277-2282. doi: 10.1016/j.jacc.2006.01.066
Cocking, S., Wilson, M. G., Nichols, D., Cable, N. T., Green, D. J., Thijssen, D. H. J., & Jones, H. (2017). Is there an optimal ischemic preconditioning dose to improve cycling performance? International Journal of Sports Physiology and Performance, 5(28), 1-25. doi: 10.1123/ijspp.2017-0114
Collier, E. A., & Percival, C. J. (1959). The working capacity of muscle during reactive hyperemia. Ergonomics, 2(1), 114-118.
Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology (1985), 111(2), 530-536. doi: 10.1152/japplphysiol.00266.2011
Cruz, R. S., de Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology (1985), 119(9), 961-967. doi: 10.1152/japplphysiol.00498.2015
DeLorey, D. S., Kowalchuk, J. M., & Paterson, D. H. (2004). Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. Journal of Applied Physiology (1985), 97(3), 998-1005. doi: 10.1152/japplphysiol.01280.2003
de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. doi: 10.1007/s00421-009-1195-2
de Salles, B. F., Simão, R., Miranda, H., Bottaro, M., Fontana, F., & Willardson, J. M. (2010). Strength increases in upper and lower body are larger with longer inter-set rest intervals in trained men. Journal of Science and Medicine in Sport, 13(4), 429-433. doi: 10.1016/j.jsams.2009.08.002. Epub 2009 Oct 7
Dragasis, S., Bassiakou, E., Iacovidou, N., Papadimitriou, L., Andreas Steen, P., Gulati, A., & Xanthos, T. (2013). The role of opioid receptor agonists in ischemic preconditioning. European Journal of Pharmacology, 720(1-3), 401-408. doi: 10.1016/j.ejphar.2013.10.001
Duncker, D. J., Van Zon, N. S., Altman, J. D., Pavek, T. J., & Bache, R. J. (1993). Role of K+ATP channels in coronary vasodilation during exercise. Circulation, 88(3), 1245-1253.
Gibson, N., Mahony, B., Tracey, C., Fawkner, S., & Murray, A. (2015). Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. Journal of Sports Sciences, 33(11), 1182-1188. doi: 10.1080/02640414.2014.988741
Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676.
Griffin, P. J., Ferguson, R. A., Gissane, C., Bailey, S. J., & Patterson S. D. (2018). Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. Journal of Sports Sciences, 36(9), 1038-1043. doi: 10.1080/02640414.2017.1349923
Gürke, L., Marx, A., Sutter, P. M., Frentzel, A., Salm, T., Harder, F., … Heberer, M. (1996). Ischemic preconditioning improves post-ischemic skeletal muscle function. The American Surgeon, 62(5), 391-394.
Horiuchi, M., Endo, J., & Thijssen, D. H. (2015). Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans. Physiological Reports, 3(2). doi: 10.14814/phy2.12304
Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., ... Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and Science in Sports and Exercise, 43(7), 1280-1286. doi: 10.1249/MSS.0b013e318206845d
Joyner, M. J., & Proctor, D. N. (1993). Muscle blood flow during exercise: The limits of reductionism. Medicine and Science in Sports and Exercise, 31(7), 1036-1040.
Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology and Neurobiology,175(2), 247-254.
Kharbanda, R. K., Peters, M., Walton, B., Kattenhorn, M., Mullen, M., Klein, N., … MacAllister, R. (2001). Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation, 103(12), 1624-1630.
Kharbanda, R. K., Mortensen, U. M., White, P. A., Kristiansen, S. B., Schmidt, M. R., Hoschtitzky, J. A., … MacAllister, R. (2002). Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation, 106(23), 2881-2883.
Kjeld, T., Rasmussen, M. R., Jattu, T., Nielsen, H. B., & Secher, N. H. (2014). Ischemic preconditioning of one forearm enhances static and dynamic apnea. Medicine and Science in Sports and Exercise, 46(1), 151-155. doi: 10.1249/MSS.0b013e3182a4090a
Kraus, A. S., Pasha, E. P., Machin, D. R., Alkatan, M., Kloner, R. A., & Tanaka, H. (2015). Bilateral upper limb remote ischemic preconditioning improves anaerobic power. The Open Sports Medicine Journal, 9(1), 1-6. doi: 10.2174/1874387001509010001
Lalonde, F., & Curnier, D. Y. (2015). Can anaerobic performance be improved by remote ischemic preconditioning? The Journal of Strength and Conditioning Research, 29(1), 80-85. doi: 10.1519/jsc.0000000000000609
Leal, A. K., Yamauchi, K., Kim, J., Ruiz-Velasco, V., & Kaufman, M. P. (2013). Peripheral δ-opioid receptors attenuate the exercise pressor reflex. American Journal of Physiology-Heart and Circulatory Physiology, 305(8), 1246-1255. doi: 10.1152/ajpheart.00116.2013
Libonati, J. R., Howell, A. K., Incanno, N. M., Pettee, K. K., & Glassberg, H. L. (2001). Brief muscle hypoperfusion/hyperemia: An ergogenic aid? The Journal of Strength and Conditioning Research, 15(3), 362-366.
Loukogeorgakis, S. P., Panagiotidou, A. T., Broadhead, M. W., Donald, A., Deanfield, J. E., & MacAllister, R. J. (2005). Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: Role of the autonomic nervous system. Journal of the American College of Cardiology, 46(3), 450-456. doi: 10.1016/j.jacc.2005.04.044
Manini, T. M., & Clark, B. C. (2009). Blood flow restricted exercise and skeletal muscle health. Exercise and Sport Sciences Reviews, 37(2), 78-85. doi: 10.1097/JES.0b013e31819c2e5c
Marocolo, M., da Mota, G. R., Pelegrini, V., & Appell Coriolano, H. J. (2015). Are the Beneficial effects of ischemic preconditioning on performance partly a placebo effect? International Journal of Sports Medicine, 36(10), 822-825. doi: 10.1055/s-0035-1549857
Marocolo, M., Willardson, J. M., Marocolo, I. C., da Mota, G. R., Simão, R., & Maior, A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. Journal of Strength and Conditioning Research, 30(5), 1462-1469. doi: 10.1519/JSC.0000000000001232
Marocolo, M., Marocolo, I. C., da Mota, G. R., Simão, R., Maior, A. S., & Coriolano, H. J. (2016). Beneficial effects of ischemic preconditioning in resistance exercise fade over time. International Journal of Sports Medicine, 37(10), 819-824. doi: 10.1055/s-0042-109066
Matuszak, M. E., Fry, A. C., Weiss, L. W., Ireland, T. R., & McKnight, M. M. (2003). Effect of rest interval length on repeated 1 repetition maximum back squats. Journal of Strength and Conditioning Research, 17(4), 634-637.
McKendry, J., Pérez‐López, A., McLeod, M., Luo, D., Dent, J. R., Smeuninx, B., ... Breen, L. (2016). Short inter‐set rest blunts resistance exercise‐induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Experimental Physiology, 101(7), 866-882. doi: 10.1113/EP085647
McLean, S., Kerhervé, H., Lovell, G. P., Gorman, A. D., & Solomon, C. (2016). The effect of recovery duration on vastus lateralis oxygenation, heart rate, perceived exertion and time motion descriptors during small sided football games. Public Library of Science, 11(2), doi: 10.1371/journal.pone.0150201
Muller, E. A. (1958). Muscular work and muscular blood circulation in reactive hyperemia. Pflugers Arch Gesamte Physiol Menschen Tiere, 265(5), 29-39.
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.
Noakes, T. D. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scandinavian Journal of Medicine and Science in Sports, 10(3), 123-145.
Oliver, J. M., Kreutzer, A., Jenke, S. C., Phillips, M. D., Mitchell, J. B., & Jones, M. T. (2016). Velocity drives greater power observed during back squat using cluster sets. Journal of Strength and Conditioning Research, 30(1), 235-243. doi: 10.1519/JSC.0000000000001023
Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788.
Pan, S. J., & Li, L. R. (2011). Adenosine A2 receptors are involved in the activation of ATP-sensitive K+ currents during metabolic inhibition in guinea pig ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 89(3), 187-196. doi: 10.1139/Y11-010
Paixao, R. C., da Mota, G. R., & Marocolo, M. (2014). Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. International Journal of Sports Medicine, 35(11), 912-915. doi: 10.1055/s-0034-1372628
Patterson, S. D., Bezodis, N. E., Glaister, M., & Pattison, J. R. (2015). The Effect of Ischemic preconditioning on repeated sprint cycling performance. Medicine and Science in Sports and Exercise, 47(8), 1652-1658. doi: 10.1249/mss.0000000000000576
Phillips, D. J., Petrie, S. G., Zhou, B. H., Guanche, C. A., & Baratta, R. V. (1997). Myoelectric and mechanical changes elicited by ischemic preconditioning in the feline hindlimb. Journal of Electromyography and Kinesiology, 7(3), 187-192.
Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 87(3), 893-899.
Salvador, A. F., De Aguiar, R. A., Lisboa, F. D., Pereira, K. L., Cruz, R. S., & Caputo, F. (2016). Ischemic preconditioning and exercise performance: A systematic review and meta-analysis. International Journal of Sports Physiology and Performance, 11(1), 4-14. doi: 10.1123/ijspp.2015-0204
Schoenfeld, B. J., Pope, Z. K., Benik, F. M., Hester, G. M., Sellers, J., Nooner, J. L., ... Just, B. L. (2016). Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. The Journal of Strength and Conditioning Research, 30(7), 1805-1812. doi: 10.1519/JSC.0000000000001272
Seeger, J. P., Timmers, S., Ploegmakers, D. J., Cable, N. T., Hopman, M. T., & Thijssen, D. H. (2017). Is delayed ischemic preconditioning as effective on running performance during a 5km time trial as acute IPC? Journal of Science and Medicine in Sport, 20(2), 208-212. doi:10.1016/j.jsams.2016.03.010
Sharma, V., Cunniffe, B., Verma, A., Cardinale, M., & Yellon, D. (2014). Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: A randomized controlled, crossover human study. Physiological Reports, 2(11). doi: 10.14814/ phy2.12200
Sloth, A. D., Schmidt, M. R., Munk, K., Kharbanda, R. K., Redington, A. N., Schmidt, M., ... Botker, H. E. (2014). Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. European Heart Journal, 35(3), 168-175. doi: 10.1093/eurheartj/eht369
Swyers, T., Redford, D., & Larson, D. F. (2014). Volatile anesthetic-induced preconditioning. Perfusion, 29(1), 10-15. doi: 10.1177/0267659113503975
Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscularfunction in humans. Journal of Applied Physiology (1985), 88(6), 2097–2106.
Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., … Isaka T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International Journal of Sports Medicine, 37(8), 614-618. doi: 10.1055/s-0035-1565141
Tocco, F., Marongiu, E., Ghiani, G., Sanna, I., Palazzolo, G., Olla, S., ... Crisafulli, A. (2015). Muscle ischemic preconditioning does not improve performance during self-paced exercise. International Journal of Sports Medicine, 36(1), 9-15. doi: 10.1055/s-0034-1384546
Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Seitz, L. B., Williamson, B. D., & Haff, G. G. (2016). Maintenance of velocity and power with cluster sets during high-volume back squats. International Journal of Sports Physiology and Performance, 11(7), 885-892. doi: 10.1123/ijspp.2015-0602
Vander Heide, R. S., Reimer, K. A., & Jennings, R. B. (1993). Adenosine slows ischaemic metabolism in canine myocardium in vitro: Relationship to ischaemic preconditioning. Cardiovascular Research, 27(4), 669-673.
Van Winkle, D. M., Chien, G. L., Wolff, R. A., Soifer, B. E., Kuzume, K., & Davis, R. F. (1994). Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. American Journal of Physiology, 266(2), 829-839.