簡易檢索 / 詳目顯示

研究生: 莊祖詮
論文名稱: 可攜式低磁場核磁共振系統之改進
The Improvement of Portable Low-Field NMR System
指導教授: 楊鴻昌
Yang, Hong-Chang
洪姮娥
Horng, Herng-Er
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 42
中文關鍵詞: 低磁場核磁共振可攜式超導量子干涉裝置
論文種類: 學術論文
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗「可攜式低磁場核磁共振之改進」是將原本需放在磁屏蔽屋內所做的實驗,將其縮小化以達到不需要在磁屏蔽屋內就可以做NMR之測量,並且可以將整組系統移到任意的地方做NMR實驗,其優點例如實驗室的轉換、遷移,使NMR實驗教學更方便成本更低廉,亦可實現使Low-Field NMR商品化等優勢。此系統部分使用了實驗室學長所製作之均勻磁場線圈以及梯度磁場線圈組,再加上改良之預極化線圈以及配合之接收線圈,期望能在提高預極化磁場驅使訊雜比(SNR)增高之餘,同時保持更換樣品時系統的穩定性及便利性。
    本實驗使用樣品5ml的水,量測了使用自製的Butterworth Filter與STANFORD RESEARCH SYSTEM Filter對於我們實驗結果的差異性,以及不同Bp架構對於實驗的影響。

    第一章 緒論 1 第二章 實驗原理 2 2-1 低磁場核磁共振原理簡介 2 2-1.1核磁共振原理 2 2-1.2 縱向鬆弛與橫向鬆弛 8 2-1.3 自由感應衰減 10 第三章 實驗架構 12 3-1 系統架構與實驗流程 12 3-2 低磁場核磁共振系統設計 14 3-2.1靜磁場線圈與梯度線圈 14 3-2.2地球磁場補償線圈(BC) 16 3-2.3 預極化線圈設計 18 3-2.4系統屏蔽設計 21 3-2.5 濾波電路以及Relay電路之設計 25 第四章 系統最校正與比較 28 4-1 系統校正 28 4-1.1 梯度磁場校正 28 4-1.2 改變預極化線圈並聯電阻 31 4-2 不同架構之比較 34 4-2.1 不同形式BP之比較 34 4-2.2 以自製濾波電路取代市售儀器 38 第五章 結論 40 參考文獻 41

    [1] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis,A.R.Young,
    W. Happer, ”Theory of spin-exchange optical pumping of 3He and 129Xe “,
    Phys. Rev. A 58, 1412 (1998).
    [2] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson,“Hyperpolarization of 13C through order transfer from parahydrogen:A new contrast agent for MRI “, Magn.Reson. Imaging 23,153 (2005) .
    [3] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,”Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [4] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich,“Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem.Phys. Lett. 348, 263
    (2001)
    [5] Hong-Chang Yang, Shu-Hsien Liao and Herng-Er Horng, and Shing-Ling Kuo, Hsin-Hsien Chen, and Shieh-Yueh Yang, “Enhancement of nuclear magnetic resonance in microtesla magneticfield with prepolarization field detected with high-Tc superconducting quantum interference device”, Appl. Phys. Lett. 88,
    252505 (2006)
    [6] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [7] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [8] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines ,
    “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A,
    108, 957-963 (2004).
    [9] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA , 101, 7857 (2004).
    [10] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA..
    [11] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [12] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [13] H. C. Seton, J.S.M. Hutchison, D. M. Busell, IEEE Trans. Appl. Supercon. 7,
    3213 (1997).
    [14] Hong-Chang Yang,Shu-Hsien Liao, Herng-Er Horng,Shing-Ling Kuo,Hsin-Hsien Chen, and S. Y. Yang, Appl. Phys. Lett. 88, 252505 (2006)
    [15] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, Appl. Phys. Lett. 70, 1037 (1997).
    [16] S. Kumar, W. F. Avrin, B. R. Whitecotton, IEEE Trans. Magn. 32, 5261 (1996).
    [17] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
    [18] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [19] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [20] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87,054103 (2005)
    [21] M A Bernstein, K F King and X J Zhou. Handbook of MRI Pulse Sequences. Elsevier Academic Press, 960 (2004)
    [22] Sasada and Y. Nakashima, “Planar coil system consisting of three coilpairs for producing a uniform magnetic field”, J. Appl. Phys. 99,08D904(2006)
    [23] S. Godefroy, M. Fleury, F. Deflandre, and J.-P. Korb,J. Phys. Chem. B,106 , 11183-11190 (2002)
    [24] Longqing Qiu1, Yi Zhang, Hans-Joachim Krause, Alex I. Braginski and Andreas Offenhäusser,” Low-field NMR Measurement Procedure when SQUID Detection is Used”, IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, 5, (2008)

    無法下載圖示 本全文未授權公開
    QR CODE