簡易檢索 / 詳目顯示

研究生: 陳肇祈
Chen, Zhao-Chi
論文名稱: 先進雷射石墨烯結構製程技術於生物分子元件應用之研究
Advanced Laser Processing Technology in Graphene for Applications of Biomolecule Devices
指導教授: 張天立
Chang, Tien-Li
學位類別: 博士
Doctor
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 147
中文關鍵詞: 脈衝雷射剝離靜電紡絲奈米線微型加熱元件石墨烯葡萄糖微流體聚合酶連鎖反應元件
英文關鍵詞: Pulsed laser ablation, Electrospun nanofibers, Microheaters, Graphene, Glucose, Microfluidic, PCR device
DOI URL: http://doi.org/10.6345/DIS.NTNU.DME.008.2018.E08
論文種類: 學術論文
相關次數: 點閱:148下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多功能生醫晶片的實現,用於人類的醫療保健上,除在生活中預防疾病發生外,更能即時甚至提前預測以獲得病患身體檢測之訊息,進一步於醫院接受更完整與深入治療,使病患在疾病之初期,立即獲得有效的診療。本研究在開發先進雷射(Advanced laser)於石墨烯(Graphene)圖案化電極製作及應用技術,以脈衝雷射剝離(Pulsed laser ablation, PLA)製程直寫(Direct writing)方式,在多層石墨烯(Multi-layer graphene, MLG)薄膜基材,進行製程材料的探討與感測元件的製作。本研究所使用的先進雷射系統,包括波長355 nm與532 nm的超快皮秒脈衝雷射(Ultrafast picosecond pulsed laser, 355/532-UPPL)及波長355 nm的奈秒脈衝雷射(Nanosecond pulsed laser, 355-NPL)。藉此先進雷射剝離製程,探討與多層石墨烯薄膜材料間之影響及特性分析,以製作感測電極結構元件。同時搭配微流體元件(Microfluidic device)設計和靜電紡絲(Electrospinning nanofibers)技術,實際應用於不同生物分子之元件檢測。

    本研究以雷射製程技術於葡萄糖(Glucose)檢測元件的應用上,在加入葡萄糖氧化酶(Glucose oxidase, GOD)前/後,其皆呈現線性關係。然而,GOD的電特性是能夠直接通過監測多層石墨烯導電薄膜來獲得的,該電性響應顯示良好的葡萄糖檢測濃度範圍為1 mM到10 mM。此外,在微流體元件的應用上,以順時鐘(Clockwise)方式製作陣列柱狀微流道(Pillar array channels)結構,其具有少量的熔渣(Dross)與平滑的表面特徵,利用實驗結果之模型預測,玻璃基板(Glass substrate)的移除率(C)可達到0.04 μm/pulse。在靜電紡絲奈米線實驗中,PVA-G混合奈米線透過少量摻雜(濃度為6%)石墨烯薄片是可降低薄膜之電阻,並且能夠在溫度60 °C下進行操作,消耗電功率(Electric power, P)為265.25 mW。在相對溼度(Relative humidity, RH)為80%時,其較佳的濕度檢測之電性響應(Electric response)、反應時間(Response time)及恢復時間(Recovery time)性質分別顯示為66.4%、11 sec和35 sec。在聚合酶連鎖反應(Polymerase chain reaction, PCR)元件的實驗中,陣列孔洞之快速熱循環(Hole arrays-rapid thermal cycling, HA-RTC)元件顯示在60分鐘的時間能夠於人類多瘤性病毒(BKV)的標記物(Marker),以及其在354鹼基對(Base pair, bp)的VP1片段完成診斷(增幅),證實以多層石墨烯薄膜電極製作之微型加熱元件是較佳溫度保持以及熱傳導之特性。

    本研究以先進脈衝雷射一次性製程(Single-step process)技術,達成免光罩(Mask-less)、微型化、快速製作及微量偵測之需求,在生醫檢測元件設計與應用,並以石墨烯材料製作薄膜檢測元件之特性,在靜電紡絲製作混合奈米線應用於生物分子之檢測獲得到驗證。

    The realization of multi-functional biomedical sensors for human health care, not only to preventing diseases in life, but also predictive to obtain the patient's medical messages. These patients can receive effective medical treatment further at once after the disease and achieve faster healing compared to hospital diagnosis. In this study, the multi-layer graphene (MLG) thin-film based electrode structures were fabricated by pulsed laser ablation (PLA) direct writing for advanced laser processing technology. Among them, the wavelength of ultrafast picosecond pulsed laser (355/532-UPPL), and nanosecond pulsed laser (355-NPL) were used. Then the effects and and characterization of MLG thin films can be investigated. At the same time, the development of microfluidic device design and electrospun nanofibers technology can be applied to detect the different biomolecules.

    Based on the laser processing technology to form the on-chip device for glucose detection, the linear I-V curves demostrated that the detection of GOD were obtained by monitoring the change of the electronic characteristics of the MLG thin-film based device. Here, the electrical respond revealed a good linear dependence in the glucose concentration range from 1 to 10 mM. For the application of microfluidic device, the reducing dross on the surface of ablated pillar array channels with the scanning curve process can be used at the optimal parameters in the clockwise direction. The C of glass device can reach the value of 0.04 μm/pulse that depends on the number of pulses applied to the microfluidic process by a simple model. For the application of electrospun nanowires, PVA-G hybrid nanofiber devices that operation was possible at temperatures of up to 60 °C with the minimal power consumption of 265.25 mW at the PVA-G concentration of 6%. When the Relative humidity (RH) was 80%, the humidity detection device indicated that the excellent sensing properties of the electric response, response time, and recovery time were 66.4%, 11 sec, and 35 sec, respectively. For the application of PCR, the HA-RTC PCR device was possibly shown BK virus (BKV) within 60 min where the marker and its VP1 fragment at 354 bp can be performed entirely diagnosis (amplification). The device with formed microheaters with the MLG thin-film electrodes was verified the good temperature retention and thermal conductivity.

    Therefore, a single-step process can be integrated to achieve the requirements of mask-less, miniaturization, rapid production and small volume detection in the design and application of biomedical detection. Furthermore, the development potential of graphene based thin-film devices with electrospinning composite nanofibers was demonstrated the on-chip sensing device for biomolecule detection.

    摘要 i ABSTRACT iii 誌謝 v 目錄 vii 表目錄 xii 圖目錄 xiii 縮寫與符號說明 xxii 第一章 緒論 1 1.1 多功能生醫晶片(Biochip)之簡介 1 1.2 研究動機與目標 2 1.3 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 4 1.4 微型加熱元件(Microheaters) 6 1.5 生醫晶片之訊號檢測原理 6 第二章 文獻回顧 11 2.1 石墨烯材料概述 11 2.1.1 石墨烯材料之應用 12 2.2 雷射產生之原理 13 2.2.1 長脈衝雷射加工機制 13 2.2.2 超短脈衝雷射加工機制 14 2.2.3 PLA製程直寫石墨烯薄膜之製程與應用 16 2.3 靜電紡絲奈米線之應用 17 2.4 微型加熱元件於生物分子檢測之應用 18 第三章 實驗方法與製程系統 32 3.1 介紹 32 3.2 脈衝雷射直寫加工系統 32 3.3 多層石墨烯薄膜試片之製備 33 3.4 靜電紡絲奈米線製程系統 34 3.5 量測與分析儀器 35 第四章 脈衝雷射直寫石墨烯薄膜特性與影響 44 4.1 介紹 44 4.2 結果與討論 44 4.2.1 多層石墨烯薄膜表面及光學特徵 44 4.2.2 355-NPL直寫多層石墨烯薄膜之特性 45 4.2.2.1 脈衝雷射能量密度(F0)與閥值能量密度(Fth)、雷射脈衝重疊率(Poverlap)及有效脈衝數目(Neff)之關係 45 4.2.2.2 脈衝雷射對多層石墨烯薄膜結構之影響 47 4.2.2.3 脈衝雷射能量密度、雷射脈衝重疊率與直寫線寬、深度之關係 47 4.2.2.4 脈衝雷射能量密度對多層石墨烯薄膜電特性之影響 51 4.2.2.5 雷射脈衝重疊率對多層石墨烯薄膜表面接觸角度之關係 52 4.2.3 355-UPPL直寫多層石墨烯薄膜之特性 52 4.2.3.1 脈衝雷射能量對多層石墨烯薄膜之結構影響 52 4.2.3.2 脈衝雷射能量密度對多層石墨烯薄膜直寫線寬、深度之關係 53 4.2.3.3 脈衝雷射能量密度對多層石墨烯薄膜電特性之影響 54 4.2.3.4 脈衝雷射能量密度對多層石墨烯薄膜光學特性之影響 54 4.2.4 532-UPPL直寫多層石墨烯薄膜之特性 55 4.2.4.1 脈衝雷射對多層石墨烯薄膜結構之影響 55 4.2.4.2 雷射脈衝重疊率對多層石墨烯薄膜直寫線寬、深度之關係 55 4.2.4.3 雷射脈衝重疊率對多層石墨烯薄膜電特性之影響 56 4.2.5 小結 57 第五章 生物分子元件之應用 74 5.1 多層石墨烯薄膜電極應用於葡萄糖分子之檢測 74 5.1.1 介紹 74 5.1.2 實驗設計與方法 74 5.1.2.1葡萄糖檢測元件製作 74 5.1.2.2葡萄糖水溶液與葡萄糖氧化酶(Glucose oxidase, GOD)製備 75 5.1.3 結果與討論 76 5.1.3.1 葡萄糖氧化酶對石墨烯薄膜電流-電壓之影響 76 5.1.3.2 葡萄糖檢測濃度與石墨烯薄膜電性響應之關係 76 5.1.4 小結 77 5.2 脈衝雷射直寫製作微流道結構及微流體功能試驗 80 5.2.1 介紹 80 5.2.2 實驗設計與方法 80 5.2.2.1 微流體元件材料之清洗與製備 80 5.2.2.2 微流道結構之設計與製作方式 80 5.2.3 結果與討論 81 5.2.3.1 355-UPPL直寫玻璃基板之劃線寬度、深度與脈衝能量密度之 關係 81 5.2.3.2 355-UPPL直寫玻璃基板製作陣列柱狀微流道結構 82 5.2.3.3 355-UPPL直寫玻璃基板微流道之微流體功能測試 82 5.2.3.4 有效脈衝數目與表面接觸角度、表面粗糙度之關係 83 5.2.3.5 355-UPPL直寫玻璃基板材料之移除率(Ablation rate, C) 83 5.2.4 小結 84 5.3 奈米線薄膜加熱元件應用於濕度感測 89 5.3.1 介紹 89 5.3.2 實驗設計與方法 89 5.3.2.1 靜電紡絲PVA-G混合奈米線薄膜電極之製備 89 5.3.2.2 濕度檢測腔體之設計與製作 90 5.3.3 結果與討論 91 5.3.3.1 PVA-G混合奈米線薄膜之結構分析 91 5.3.3.2 PVA-G混合奈米線薄膜之表面輪廓特徵 91 5.3.3.3 PVA-G混合奈米線薄膜之電特性值與比表面積(Sf)之關係 93 5.3.3.4 PVA-G混合奈米線薄膜之電功率(P)性質 94 5.3.3.5 PVA-G混合奈米線電熱行為與濕度檢測 95 5.3.4 小結 96 5.4 多層石墨烯薄膜電極結合PCR技術應用於BKV檢測 108 5.4.1 介紹 108 5.4.2 實驗設計與方法 110 5.4.2.1 HA-RTC PCR元件之製作流程 110 5.4.2.2 多層石墨烯薄膜之圖案化陣列孔洞製作方式 111 5.4.2.3 BKV以及PCR試劑之製備 112 5.4.2.4 驗證使用之傳統PCR設備 112 5.4.2.5 多層石墨烯薄膜電極表面形貌、溫度分佈以及凝膠電泳分析 113 5.4.3 結果與討論 113 5.4.3.1 532-UPPL直寫多層石墨烯薄膜之表面形貌 113 5.4.3.2 具有陣列孔洞之多層石墨烯薄膜加熱元件之熱特性質 114 5.4.3.3 HA-RTC熱循環溫度控制以及熱循環次數對PCR之影響 115 5.4.3.4 HA-RTC PCR元件針對BKV檢測實驗 116 5.4.4 小結 116 第六章 結論與未來展望 124 6.1 結論 124 6.2 未來展望 124 參考文獻 126 作者簡介 144

    [1] D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection, Biosens. Bioelectron. 75 (2016) 273-284.
    [2] L. J. Wang, Y. C. Chang, R. Sun, L. Li, A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics, Biosens. Bioelectron. 87 (2017) 3514-3520.
    [3] Global events. 5th Euro Biosensors & Bioelectronics Conference. Retrieved 2016 (from https://biosensorscongress.conferenceseries.com/).
    [4] Global flow cytometry market trends and opportunities for the industry by 2023. Zion Research Analysis. Retrieved 2017 (from https://www.zionmarketresearch.com/).
    [5] Pioneer in actionable global market research reports. AMERI research Inc. Biosensors Market Outlook to 2024. Retrieved 2018 (from https://www.ameriresearch.com/).
    [6] The world's largest and most trusted BI enabled market research database. Grand view research. Retrieved 2018 (from https://www.grandviewresearch.com/).
    [7] L. J. Dipersio. Precision medicine and point of care: improving efficiency in health practice. DTC in Focus. Retrieved 2015 (from http://www.dtcperspectives.com/precision-medicine-and-point-of-care-improving-efficiency-in-health-practice/).
    [8] C. I. L. Justino, A. C. Duarte, T. A. P. Rocha-Santos, Recent progress in biosensors for environmental monitoring: A Review, Sensors 17 (2017) 2918-2942.
    [9] Y. Du, S. Dong, Nucleic acid biosensors: Recent advances and perspectives, Anal. Chem. 89 (2017) 189-215.
    [10] J. Jiang, J. Kang, W. Cao, X. Xie, H. Zhang, J. H. Chu, W. Liu, K. Banerjee, Intercalation doped multilayer-nanoribbons for next-generation interconnects, Nano Lett. 17 (2017) 1482-1488.
    [11] P. K. Kannan, S. A Moshkalev, C. S. Rout, Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobelts, Nanotechnology 27 (2016) 075504.
    [12] E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F. Ö. Ilday, C. Kocabas, NLL-assisted multilayer graphene patterning, ACS Omega 3 (2018) 1546-1554.
    [13] Y. Qian, X. Zhao, Q. Han, W. Chen, H. Li, W. Yuan, An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration, Nat. Commun. 9 (2018) 323-338.
    [14] P. Ekabutr, W. Klinkajon, P. Sangsanoh, O. Chailapakul, P. Niamlang, T. Khampieng, P. Supaphol, Electrospinning: a carbonized gold/graphene/PAN nanofiber for high performance biosensing, Anal. Methods 10 (2018) 874-883.
    [15] J. Xue, J. Xie, W. Liu, Y. Xia, Electrospun nanofibers: new concepts, materials, and applications, Acc. Chem. Res. 50 (2017) 1976-1987.
    [16] J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes, Int. J. Electrochem. Sci. 13 (2018) 2934-2944.
    [17] A. D. Mori, M. P. F. ández, G. Blunn, G. Tozzi, M. Roldo, 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering, polymers 10 (2018) 285.
    [18] H. Klenow, I. Henningsen, Selective Elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from escherichia coli B by limited proteolysis, Proc. Natl. Acad. Sci. U.S.A. 65 (1970) 168-175.
    [19] K. Kleppe, E. Ohtsuka, R. Kleppe, I. Molineux, H. G. Khorana, Studies on polynucleotides: XCVI. Repair replication of short synthetic DNA's as catalyzed by DNA polymerases, J. Mol. Biol. 56 (1971) 341-361.
    [20] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230 (1985) 1350-1354.
    [21] A. Chien, D. B. Edgar, J. M. Trela, Deoxyribonucleic acid polymerase from the extreme thermophile thermos-aquaticus, J. Bacteriol. 127 (1976) 1550-1557.
    [22] Y. Yao, K. K. Fu, C. Yan, J. Dai, Y. Chen, Y. Wang, B. Zhang, E. Hitz, L. Hu, Three-dimensional printable high temperature and high-rate heaters, ACS Nano 10 (2016) 5272-5279.
    [23] L. Chen, Y. Zhang, Q. Wu, Effect of graphene coating on the heat transfer performance of a composite anti-/deicing component, Coatings 7 (2017) 158.
    [24] S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, Ultrafast graphene oxide humidity sensors, ACS Nano 7 (2013) 11166-11173.
    [25] M. Gharesi, M. Ansari, Tin oxide microheater for chemical sensors, Mater. Sci. Eng., A 108 (2016) 016018.
    [26] G. Wong, I. Wong, K. Chan, Y. Hsieh, S. Wong, A rapid and low-cost PCR thermal cycler for Low resource settings, PLoS One 10 (2015) 0131701.
    [27] Q. Li, F. Zeng, N. Lyu, J. Liang, Highly sensitive and specific electrochemical biosensor for microRNA-21 detection by coupling catalytic hairpin assembly with rolling circle amplification, Analyst 143 (2018) 2304-2309.
    [28] P. Yáñez-Sedeño, S. Campuzano, J. M. Pingarrón, Integrated affinity biosensing platforms on screen-printed electrodes electrografted with diazonium salts, Sensors 18 (2018) 675.
    [29] E. Povedano, E. Vargas, V. Ruiz-Valdepeñas Montiel, R. M. Torrente-Rodríguez, M. Pedrero, R. Barderas, P. S. Segundo-Acosta, A. Peláez-García, M. Mendiola, D. Hardisson, S. Campuzano, J. M. Pingarrón, Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments, Sci. Rep. 8 (2018) 6418.
    [30] K. I. Ho, M. Boutchich, C. Y. Su, R. Moreddu, E. S. R. Marianathan, L. Montes, C. S. Lai, A Self‐aligned high‐mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering, Adv. Mater. 41 (2015) 6519-25.
    [31] B. R. Sharma, A. Manjanath, A. K. Sing, Pentahexoctite: a new two-dimensional allotrope of carbon, Sci. Rep. 4 (2014) 7164.
    [32] S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof, Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications, Materials 11 (2018) 295.
    [33] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308.
    [34] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.
    [35] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.
    [36] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.
    [37] Z. Li, L. Chen, S. Meng, L. Guo, J. Huang, Y. Liu, W. Wang, X. Chen, Field and temperature dependence of intrinsic diamagnetism in graphene: theory and experiment, Phys. Rev. B 91 (2015) 094429.
    [38] H. P. Boehm, A. Clauss, G. O. Fischer, U. Hofmann, The adsorption behavior of very thin carbon films, ZAAC. 316 (1962) 119-127.
    [39] A. M. Dimiev, S. Eigler, graphene oxide: fundamentals and applications, John Wiley & Sons, Inc. (2017) 978-1-119-06940-9.
    [40] A. K. Geim, graphene prehistory, Phys. Scr. 146 (2012) 014003.
    [41] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
    [42] This month in physics history: October 22, 2004: discovery of graphene, APS News. Series II. 18 (2009).
    [43] Discovery of graphene, the University of Manchester.
    [44] The Nobel Prize in physics 2010, The Nobel foundation (2013).
    [45] J. An, Y. G. Jeong, Structure and electric heating performance of graphene/epoxy composite films, Eur. Polym. J. 49 (2013) 1322-1330.
    [46] R. Sripada, V. B. Parambath, M. Baro, S. P. N. Nair, R. Sundara, Platinum and platinum-iron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor, Int. J. Hydrogen Energy 40 (2015) 10346-10353.
    [47] A. R. Unnithan, C. H. Park, C. S. Kim, Nanoengineered bioactive 3D composite scaffold: a unique combination of graphene oxide and nanotopography for tissue engineering applications, Composites Part B 90 (2016) 503-511.
    [48] A. L. Schawlow, C. H. Townes, Infrared and optical masers, Phys. Rev. 112 (1958) 1940.
    [49] T. H. Maiman, Stimulated optical radiation in ruby, Nature 187 (1960) 493-494.
    [50] E. R. Menzel, Laser spectroscopy: techniques and applications, Applied Electrospray Mass Spectrometry: Practical Spectroscopy Series (1995) 0-8247-9265-3.
    [51] G. H. Petti, R. Sauerbrey, Pulsed ultraviolet laser ablation, Appl. Phys. Lett. 56 (1993) 51.
    [52] 張天立, 羅紹維, 姚中翰, 周大鑫, 蘇志杰, 蔡宏營, 林宏彝, 雷射超精密微奈米結構加工技術介紹, 機械工業雜誌 306 (2008).
    [53] B. Michaels, Miniaturized cutting and drilling using picosecond lasers, MDDI (2014).
    [54] 周賢能, 蘇柏年, 雷射最佳參數的選擇, 機械月刊 323 (2010).
    [55] X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrashort laser pulses, IEEE J. Quantum Electron. 33 (1997) 1706-1716.
    [56] E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, B. Luther-Davies, Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics, Phys. Rev. A 23 (2001).
    [57] F. Wakaya, T. Teraoka, T. Kisa, T. Manabe, S. Abo, M. Takai, Effect of ultra-violet laser irradiation on graphene, Microelectron. Eng. 97 (2012) 144-146.
    [58] H. Y. Chen, D. Han, Y. Tian, R. Shao, S. Wei, Mask-free and programmable patterning of graphene by ultrafast laser direct writing, Chem. Phys. 430 (2014) 13-17.
    [59] S. Y. Lin, T. Y. Zhang, Q. Lu, D. Y. Wang, Y. Yang, X. M. Wu, T. L. Ren, High-performance graphene-based flexible heater for wearable applications, RSC Adv. 7 (2017) 27001-27006.
    [60] T. Y. Zhang, H. M. Zhao, D. Y. Wang, Q. Wang, Y. Pang, N. Q. Deng, H. W. Cao, Y. Yang, T. L. Ren, A super flexible and custom-shaped graphene heater, Nanoscale 9 (2017) 14357-14363.
    [61] P. Li, J. G. Ma, H. Y. Xu, D. Lin, X. D. xue, X. Z. Yan, P. Xia, Y. C. Liu, Flexible transparent heaters based on silver nanotrough meshes, J. Alloys Compd. 664 (2016) 764-769.
    [62] K. H. Pyo, J. W. Kim, Thermally stable and flexible transparent heaters based on silver nanowire-colorless polyimide composite electrode, Curr. Appl Phys. 16 (2016) 1453-1458.
    [63] T. B. Christensen, D. D. Bang, A. Wolff, Multiplex polymerase chain reaction (PCR) on a SU-8 chip, Microelectron. Eng. 85 (2008) 1278-1281.
    [64] D. Moschou, N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis, A. Tserepia, All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification, Sens. Actuators, B 199 (2014) 470-478.
    [65] J. H. Son, B. Cho, S. G. Hong, S. H. Lee, O. Hoxha, A. J. Haack, L. P. Lee, Ultrafast photonic PCR, Light Sci. Appl. 4 (2015) 1-7.
    [66] P. Ohlsson, M. Evander, K. Petersson, L. Mellhammar, A. Lehmusvuori, U. Karhunen, M. Soikkeli, T. Seppa, E. Tuunainen, A. Spangar, P. von Lode, K. R. Jalava, G. Otto, S. Scheding, T. Soukka, S. Wittfooth, T. Laurell, Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics, Anal. Chem. 88 (2016) 9403-9411.
    [67] C. Wu, F. Li, Y. Zhang, T. Guo, Vacuum 94 (2013) 48-52.
    [68] S. Thibert, J. Jourdan, B. Bechevet, D. Chaussy, N. Reverdy-Bruas, D. Beneventi, Mater. Sci. Semicond. Process. 27 (2014) 790-799.
    [69] M. Kim, D. Kim, D. Kim, Y. Kang, Analysis of laser-induced damage during laser ablation process using picosecond pulse width laser to fabricate highly efficient PERC cells, Sol. Energy 108 (2014) 101-106.
    [70] Y. Jin, W. Perrie, P. Harris, O. J. Allegre, K. J. Abrams, G. Dearden, Patterning of aluminium thin film on polyethylene terephthalate by multi-beam picosecond laser, Opt. Lasers Eng. 74 (2015) 67-74.
    [71] D. G. Mixon, W. P. Roach, A thermal model of laser absorption, Proc. of SPIE 6435 (2007) 643501-1.
    [72] S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, M. Schmidt, Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning, Appl. Surf. Sci. 290 (2014) 368-372.
    [73] D. H. Duc, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide, Int. J. Heat Mass Trans. 65 (2013) 713-718.
    [74] A. Dunn, J. V. Carstensen, K. L. Wlodarczyk, E. B. Hansen, J. Gabzdyl, P. M. Harrison, J. D. Shephard, D. P. Hand, Nanosecond laser texturing for high friction applications, Opt. Laser Eng. 62 (2014) 9-16.
    [75] S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, P. R. Herman, Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides, Optics Express 16 (2008) 9443-9458.
    [76] K. Venkatakrishnan, P. Stanley, N. R. Sivakumar, B. Tan, L. E. N. Lim, Effect of scanning resolution and fluence fluctuation on femtosecond laser ablation of thin films, Appl. Phys. A 77 (2003) 655-658.
    [77] R. Karimzadeh, J. Zamir Anvari, N. Mansour, Nanosecond pulsed laser ablation of silicon in liquids, Appl. Phys. A 94 (2009) 949-955.
    [78] Y. F. Hao, Y. Y. Wang, L. Wang, Z. H. Ni, Z. Q. Wang, R. Wang, C. K. Koo, Z. X. Shen, J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small 6 (2010) 195-200.
    [79] S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, Nanosecond laser ablation of gold nanoparticle films, Appl. Phys. Lett. 89 (2006) 141126.
    [80] A. Nazarian, C. Presser, Thermal and chemical kinetic characterization of multiphase and multicomponent substances by laser heating, Int. J. Heat Mass Trans. 51 (2008) 1365-1378.
    [81] F. Wakaya, T. Kurihara, N. Yurugi, S. Abo, M. Abe, M. Takai, Maskless laser processing of graphene, Microelectron. Eng. 141 (2015) 203-206.
    [82] G. Kalita, L. Qi, Y. Namba, K. Wakita, M. Umeno, Femtosecond laser induced micropatterning of graphene film, Mater. Lett. 65 (2011) 1569-1572.
    [83] M. Hatano, S. Moon, M. Lee, K. Suzuki, C. P. Grigoropoulos, Excimer laser-induced temperature field in melting and resolidification of silicon thin films, J. Appl. Phys. 87 (2000) 36-43.
    [84] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. Dei, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563-568.
    [85] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. Paul, D. Chu, A. C. Ferrari, Inkjet-printed graphene electronics, ACS Nano 6 (2012) 2992-3006.
    [86] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, M. A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature 445 (2007) 519-522.
    [87] M. A. Tabrizi, M. Shamsipur, A label-free electrochemical DNA biosensor based on covalent immobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode, Biosens. Bioelectron. 69 (2015) 100-105.
    [88] P. R. Rich, A. Maréchal, Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, J. R. Soc. Interface 10 (2013) 20130183.
    [89] P. Bhattachary, D. Du, Y. Lin, Bioinspired nanoscale materials for biomedical and energy applications, J. R. Soc. Interface 11 (2014) 20131067.
    [90] A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. LeRoy, A. S. Sandhu, Response of graphene to femtosecond high-intensity laser irradiation, Appl. Phys. Lett. 99 (2011) 051912.
    [91] Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, T. M. Monro, Integration of conductive reduced graphene oxide into microstructured optical fires for optoelectronics applications, Sci. Rep. 6 (2016) 21682.
    [92] Y. C. Guan, Y. W. Fang, G. C. Lim, H. Y. Zheng, M. H. Hong, Fabrication of laser-reduced graphene oxide in liquid nitrogen environment, Sci. Rep. 6 (2016) 28913.
    [93] M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, Z. Sun, Electron field emission from screen-printed graphene films, Nanotechnology 21 (2009) 425702.
    [94] E. P. Randviir, D. A. C. Brownson, J. P. Metters, R. O. Kadara, E. B. Craig, The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes, Phys. Chem. Chem. Phys. 16 (2014) 4598-4611.
    [95] T. Alizadeh, A. Akbari, A capacitive biosensor for ultra-trace level urea determination based on nano-sized urea-imprinted polymer receptors coated on graphite electrode surface, Biosens. Bioelectron. 43 (2013) 321-327.
    [96] M. R. Islam, M. J. Serpe, Label-free detection of low protein concentration in solution using a novel colorimetric assay, Biosens. Bioelectron. 49 (2013) 133-138.
    [97] Y. Piao, D. J. Han, T. S. Seo, Highly conductive graphite nanoparticles based enzyme biosensor for electrochemical glucose detection, Sens. Actuators, B 194 (2014) 454-459.
    [98] R. Othman, G. T. Vladisavljevi ć, Z. K. Nagy, Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics, Chem. Eng. Sci. 137 (2015) 119-130.
    [99] S. Ahmed, M. P. N. Bui, A. Abbas, Paper-based chemical and biological sensors: Engineering aspects, Biosens. Bioelectron. 77 (2016) 249-263.
    [100] R. R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials, Nat. Photonics 2 (2008) 219-225.
    [101] J. V. Green, D. Sun, A. Hafezi-Moghadam, K. Lashkari, S. K. Murthy, Microfluidic pillar array sandwich immunofluorescence assay for ocular diagnostics, Biomed. Microdevices 13 (2011) 573-583.
    [102] F. Fan, W. H. Gu, X. H. Wang, Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array, S. J. Chang, Appl. Phys. Lett. 102 (2013) 121113.
    [103] K. K. Zeming, S. Ranjan, Y. Zhang, Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device, Nat. Nanotechnol. 4 (2013) 1625-1632.
    [104] S. Rahong, T. Yasui, T. Yanagida, K. Nagashima, M. Kanai, A. Klamchuen, G. Meng, Y. He, F. Zhuge, N. Kaji, T. Kawai, Y. Baba, Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires, Sci. Rep. 4 (2014) 5252-5259.
    [105] Z. F. Ke, M. Lin, J. F. Chen, J. S. Choi, Y. Zhang, A. Fong, A. J. Liang, S. F. Chen, Q. Y. Li, W. F. Fang, P. S. Zhang, M. A. Garcia, T. Lee, M. Song, H. A. Lin, H. C. Zhao, S.C. Luo, S. Hou, H. H. Yu, H. R. Tseng, Programming thermoresponsiveness of nanovelcro substrates enables effective purification of circulating tumor cells in lung cancer patients, ACS Nano 9 (2015) 62-70.
    [106] H. T. Mitchell, I. C. Noxon, C. A. Chaplan, S. J. Carlton, C. H. Liu, K. A. Ganaja, N. W. Martinez, C. E. Immoos, P. J. Costanzoa, A. W. Martinez, Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices, Lab Chip 15 (2015) 2213-2220.
    [107] E. Elizalde, R. Urteaga, C. L. A. Berli, Rational design of capillary-driven flows for paper-based microfluidics, Lab Chip 15 (2015) 2173-2180.
    [108] G. Pozza, S. Kroesen, G. Bettella, A. Zaltron, M. Esseling, G. Mistura, P. Sartori, E. Chiarello, M. Pierno, C. Denz, C. Sada, T-junction droplet generator realised in lithium niobate crystals by laser ablation, Opto fluid. Micro fluid. Nano fluid. 1 (2014) 34-42.
    [109] H. Pan, F. Luo, G. Lin, C. Wang, M. Dong, Y. Liao, Q. Z. Zhao, Quasi-superhydrophobic porous silicon surface fabricated by ultrashort pulsed-laser ablation and chemical etching, Chem. Phys. Lett. 637 (2015) 159-163.
    [110] T. Chen, A. Pan, C. Li, J. Si, X. Hou, Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching, Appl. Surf. Sci. 325 (2015) 145-150.
    [111] E. Ueda, P.A. Levkin, Emerging applications of superhydrophilic-superhydrophobic micropatterns, Adv. Mater. 25 (2013) 1234-1247.
    [112] S. C. Cho, Y. Wang, Two-phase flow dynamics in a micro hydrophilic channel: A theoretical and experimental study, Int. J. Heat Mass Transf. 70 (2014) 340-352.
    [113] A. Rodríguez, A. Arriola, T. Tavera, N. Pérez, S. M. Olaizola, Enhanced depth control of ultrafast laser micromachining of microchannels in soda-lime glass, Microelectron. Eng. 98 (2012) 672-675.
    [114] E. Bulushev, V. Bessmeltsev, A. Dostovalov, N. Goloshevsky, A. Wolf, High-speed and crack-free direct-writing of microchannels on glass by an IR femtosecond laser, Opt. Lasers Eng. 79 (2016) 39-47.
    [115] K. L. Wlodarczyk, A. Brunton, P. Rumsby, D. P. Hand, Picosecond laser cutting and drilling of thin flex glass, Opt. Lasers Eng. 78 (2016) 64-74.
    [116] K. J. Ramalingam, N. R. Dhineshbabu, S. R. Srither, B. Saravanakumar, R. Yuvakkumar, V. Rajendran, Electrical measurement of PVA/graphene nanofibers for transparent electrode applications, Synth. Met. 191 (2014) 113-119.
    [117] I. Y. Prosanov, A. A. Matvienko, Study of PVA thermal destruction by means of IR and Raman spectroscopy, Physics of the Solid State, 52 (2010) 2203-2206.
    [118] B. Shen, W. Zhai, D. Lu, J. Wang, W. Zheng, Ultrasonication-assisted direct functionalization of graphene with macromolecules, RSC Adv. 2 (2012) 4713-4719.
    [119] M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor, Tm-doped fiber laser mode-locked by graphene-polymer composite, Opt. Express 20 (2012) 25077-25084.
    [120] T. T. Li, M. Yan, Q. Jiang, H. K. Peng, J. H. Lin, C. W. Lou, Characterization and microstructure of linear electrode-electrospun graphene-filled polyvinyl alcohol nanofiber films, Materials 11 (2018) 1033-1044.
    [121] S. Ghobadi, S. Sadighikia, M. Papila, F. Ç. Cebeci, S. A. Gursel, RSC Adv. 5 (2015) 85009-85018.
    [122] S. Yao, Y. bao Li, Z. Zhou, H. Yan, graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology, RSC Adv. 5 (2015) 91878-91887.
    [123] H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, S. Z. D. Cheng, Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes, Chem. Mater. 17 (2005) 967-973.
    [124] B. Sundaray, V. Subramanian, T. S. Natarajan, Preparation and characterization of polystyrene-multiwalled carbon nanotube composite fibers by electrospinning, J Nanosci Nanotechnol. 7 (2007) 1793-1795.
    [125] D. Cho, A. N. Netravali, Y. L. Joo, Polym. Degrad. Stab. 97 (2012) 747-754.
    [126] N. A. Zubair, N. A. Rahman, H. N. Lim, Y. Sulaiman, Nanoscale Res. Lett. 12 (2017) 113.
    [127] S. J. Eichhorn, W. W. Sampson, Relationships between specific surface area and pore size in electrospun polymer fibre networks, J. R. Soc. Interface 7 (2010) 641-649.
    [128] H. Bai, Y. X. Xu, L. Zhao, C. Li, G. Q, Shi, Non-covalent functionalization of graphene sheets by sulfonated polyaniline, Chem. Commun. 13 (2009) 1667-1669.
    [129] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, One-step ionic-liquid- assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite, Adv. Funct. Mater. 18 (2008) 1518-1525.
    [130] M. K. Shin, Y. J. Kim, S. I. Kim, S. K. Kim, H. Lee, G. M. Spinks, S. J. Kim, Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning, Sens. Actuators, B 134 (2008) 122-126.
    [131] S. Ghobadi, S. Mehraeen, R. Bakhtiari, B. Shamloo, V. Sadhu, M. Papila, F. C. Cebeci, S. A. Gursel, PVA/PANI/rGO ternary electrospun mats as metalfree anti-bacterial substrates, RSC Adv. 6 (2016) 92434-92442.
    [132] J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi,B. H. Hong, High-performance graphene-based transparent flexible heaters, Nano Lett. 11 (2011) 5154-5158.
    [133] D. Jung, D. Kim, K. H. Lee, L. J. Overzet, G. S. Lee, Transparent film heaters using multi-walled carbon nanotube sheets, Sens. Actuators, A 199 (2013) 176-180.
    [134] O. Monereo, J. D. Prades, A. Cirera, Self-heating effects in large arrangements of randomly oriented carbon nanofibers: Application to gas sensors, Sens. Actuators, B 211 (2015) 489-497.
    [135] V. I. Popov, D. V. Nikolaev, V. B. Timofeev, S. A. Smagulova1, I. V. Antonova, graphene-based humidity sensors: the origin of alternating resistance change, Nanotechnology 28 (2017) 355501.
    [136] D. T. Phan, I. Park, A. R. Park, C. M. Park, K. J. Jeon, Black P/graphene hybrid: A fast response humidity sensor with good reversibility and stability, Sci. Rep. 7 (2017) 10561.
    [137] S. Benedict, P. K. Basu, N. Bhat, Low power gas sensor array on flexible acetate substrate, J. Micromech. Microeng. 27 (2017) 075024.
    [138] Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor, Nanoscale 7 (2015) 10078-10084.
    [139] K. B. Mullis, F. A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol. 155 (1987) 335-350.
    [140] I. M. Mackay, K. E. Arden, A. Nitsche, Survey and summary real-time PCR in virology, Nucleic Acids Res. 30 (2002) 1292-1305.
    [141] C. Drosten, S. Günther, W. Preiser, S. V. D. Werf, Hans-Reinhard Brodt, S. Becker, S. Rabenau, M. Panning, L. Kolesnikova, R. A. M. Fouchier, A. Berger, Ana-Maria Burguière, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, Jean-Claude Manuguerra, S. Müller, V. Rickerts, M. Stürmer, V. Vieth, Hans-Dieter Klenk, A. D. M. E. Osterhaus, H. Schmitz, H. W. Doerr, Survey and summary real-time PCR in virology, N. Engl. J. Med. 348 (2003) 1967-1976.
    [142] J. S. M. Peiris, S. T. Lai, L. L. M. Poon, Y. Guan, L. Y. C. Yam, W. Lim, J. Nicholls, W. K. S. Yee, W. W. Yan, M. T. Cheung, V. C. C. Cheng, K. H. Chan, D. N. C. Tsang, R. W. H. Yung, T. K. Ng, K. Y. Yuen, Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet 361 (2003) 1319-1325.
    [143] M. Yamamoto, H. Kimura, T. Hironaka, K. Hirai, S. Hasegawa, K. Kuzushima, M. Shibata, T. Morishima, Detection and quantification of virus DNA in plasma of patients with estein-barr virus-associated diseases, J. Clin. Microbiol. 33 (1995) 1765-1768.
    [144] T. Hryniewiecki, A. Gzyl, E. Augustynowicz, Rawczynska-Englert, Development of broad-range polymerase chain reaction (PCR) bacterial identification in diagnosis of infective endocarditis, J. Heart Valve Dis. 11 (2002) 870-4.
    [145] K. M. McCabe, G. Khan, Y. H. Zhang, E. O. Mason, E. R. McCabe, Amplification of bacterial DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis, Pediatrics 95 (1995) 165-9.
    [146] J. L. Holland, L. Louie, A. E. Simor, M. Louie, PCR detection of Escherichia coli O157:H7 directly from stools: evaluation of commercial extraction methods for purifying fecal DNA, J. Clin. Microbiol. 33 (2000) 4108-4113.
    [147] G. Sabat, P. Rose, W. J. Hickey, J. M. Harkin, Selective and sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil, Appl. Environ. Microbiol. 66 (2000) 844-849.
    [148] U. Evertsson, H. J. Monstein, A. G. Johannson, Detection and identification of fungi in blood using broad-range 28S rDNA PCR amplification and species-specific hybridization, APMIS 108 (2000) 385-392.
    [149] S. Bigham, A. Fazeli, S. Moghaddam, Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling, Sci. Rep. 7 (2017) 44745.
    [150] H. Seo, Y. Lim, H. Shin, I. C. Bang, Effects of hole patterns on surface temperature distributions in pool boiling, Int. J. Heat Mass Transfer 120 (2018) 587-596.
    [151] S. Riera, J. Barrau, J. I. Rosell, M. Omri, L. G. Fréchette, Experimental demonstration of a tailored-width microchannel heat exchanger configuration for uniform wall temperature, Int. J. Mod. Phys. Conf. Ser. 476 (2013) 012075.
    [152] H. Seo, H. D. Yun, Soon-Yong Kwon, I. C. Bang, Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer, Nano Lett. 16 (2016) 932-938.
    [153] T. Y. Zhang, Hai-Ming Zhao, Dan-Yang Wang, Q. Wang, Y. Pang, Ning-Qin Deng, Hui-Wen Cao, Y. Yang, Tian-Ling Ren, A super flexible and custom-shaped graphene heater, Nanoscale 9 (2017) 14357-14363.
    [154] D. Nieto, P. McGlynn, M. D. L. Fuente, R. Lopez-Lopez, G. M. O’connor, Laser microfabrication of a microheater chip for cell culture outside a cell incubator, Colloids Surf., B 154 (2017) 263-269.
    [155] S. Lin, W. Feng, X. Miao, X. Zhang, S. Chen, Y. Chen, W. Wang, Y. Zhang, A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate, Biosens. Bioelectron. 110 (2018) 89-96.
    [156] D. C. Vanegas, L. Patiño, C. Mendez, D. A. D. Oliveira, A. M. Torres, C. L. Gomes, E. S. McLamore, Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials, Biosensors 8 (2018) 42-60.
    [157] K. T. Paula, G. Gaál, G. F. B. Almeida, M. B. Andrade, M. H. M. Facure, D. S. Correa, A. R. Jr., V. Rodrigues, C. R. Mendonça, Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications, Opt. Laser Technol. 101 (2018) 74-79.
    [158] N. Ahsan, K. V. Shah, Polyomaviruses and human diseases, Adv. Exp. Med. Biol. 577 (2006) 1-18.
    [159] H. H. Hirsch, P. Randhawa, BK virus in solid organ transplant recipients, Am. J. Transplant. 9 (2009) 136-146.
    [160] O. Gjoerup, Y. Chang, Update on human polyomaviruses and cancer, Adv. Cancer Res. 106 (2010) 1-51.
    [161] K. A. Barraclough, N. M. Isbel, C. E. Staatz, D. W. Johnson, BK virus in kidney transplant recipients: the influence of immunosuppression, J. Transplant. (2011) 750836.
    [162] H. H. Hirsch, D. C. Brennan, C. B. Drachenberg, F. Ginevri, J. Gordon, A. P. Limaye, M. J. Mihatsch, V. Nickeleit, E. Ramos, P. Randhawa, R. Shapiro, J. Steiger, M. Suthanthiran, J. Trofe, Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations, Transplantation 79 (2005) 1277-1286.
    [163] D. Sawinski, S. Goral, BK virus infection: an update on diagnosis and treatment, Nephrol. Dial. Transplant. 30 (2015) 209-217.
    [164] J. Jia, L. Sun, N. Hu, G. Huang, J. Weng, graphene enhances the specificity of the polymerase chain reaction, small 8 (2012) 2011-2015.
    [165] Y. Wang, F. Wang, H. Wang, M. Song, graphene oxide enhances the specificity of the polymerase chain reaction by modifying primer-template matching, Sci. Rep. 7 (2017) 16510.
    [166] A. Krumbholz, R. Zell, R. Egerer, A. Sauerbrei, A. Helming, B. Gruhn, P. Wutzler, Prevalence of BK virus subtype I in Germany, J. Med. Virol. 78 (2006) 1588-1598.
    [167] L. H. Nali, C. U. Cristiane, R. P. P. Paulo, C. V. Augusto, E. M. Jose, P. P. Erique, S. F. Claudio, C. D. Maria, High prevalence of the simultaneous excretion of polyomaviruses JC and BK in the urine of HIV-infected patients without neurological symptoms in São Paulo, Rev. Inst. Med. Trop. Sao Paulo 54 (2012) 201-205.
    [168] B. Davaji, H. D. Cho, M. Malakoutian, Jong-Kwon Lee, G. Panin, T. W. Kang, C. H. Lee, A patterned single layer graphene resistance temperature sensor, Sci. Rep. 7 (2017) 8811.
    [169] D. Nieto, P. McGlynn, M. de la Fuente, R. Lopez-Lopez, G. M. O’connor, Laser microfabrication of a microheater chip for cell culture outside a cell incubator, Colloids Surf., B 154 (2017) 263-269.
    [170] D. Moschou, N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis, A. Tserepi, All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification, Sens. Actuators, B 199 (2014) 470-478.

    下載圖示
    QR CODE