研究生: |
林聖裕 Lin, Shen-Yu |
---|---|
論文名稱: |
數位彎曲感測器應用於手指手勢辨識系統開發之研究 Digital Flex Sensors Applied to the Development of Finger Gesture Recognition System |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 穿戴式裝置 、智慧手套 、系統整合 、手指手勢辨識系統 、手勢辨識應用 、手勢偵測 、數位彎曲感測器 |
DOI URL: | http://doi.org/10.6345/NTNU202001223 |
論文種類: | 學術論文 |
相關次數: | 點閱:185 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將基於感測器(Sensor-based)手指手勢辨識系統的軟硬體整合,利用數位彎曲感測器(Digital FlexSensor)用於偵測手指動作,且穿戴式裝置的製作是以手套的方式呈現,演算法則上包含手勢資料的收集、手勢偵測、手勢辨識以及實際應用皆進行整合,讓整個手指手勢辨識系統能夠完整呈現。
另外本論文將目前基於感測器的手勢辨識論文中幾乎未提及的手勢偵測納入至手勢辨識的系統之中。在實驗中透過定義的5種前景手勢及4種手勢指令個別讓Gesture Classification及Gesture Detection的類神經網路訓練以及辨識,使得將時間序列中較難以解決的前景手勢及背景手勢分離問題有效解決,並且透過使用者穿戴智慧手套做出手勢動作以實現實際應用。
[1] Rautaray, S. S., & Agrawal, A. (2015). Vision based hand gesture recognition for human computer interaction: a survey. Artificial intelligence review, 43(1), 1-54.
[2] Gupta, H. P., Chudgar, H. S., Mukherjee, S., Dutta, T., & Sharma, K. (2016). A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensors. IEEE Sensors Journal, 16(16), 6425-6432.
[3] Kim, M., Cho, J., Lee, S., & Jung, Y. (2019). Imu sensor-based hand gesture recognition for human-machine interfaces. Sensors, 19(18), 3827.
[4] Minto, L., & Zanuttigh, P. (2015). Exploiting silhouette descriptors and synthetic data for hand gesture recognition.
[5] Memo, A., & Zanuttigh, P. (2018). Head-mounted gesture controlled interface for human-computer interaction. Multimedia Tools and Applications, 77(1), 27-53.
[6] 朱晏呈. (2019). Feedforward Neural Networks 於連續手勢辨識之研究. 臺灣師範大學資訊工程學系學位論文.
[7] Jhang, Y. J., Chu, Y. C., Tai, T. M., Hwang, W. J., Cheng, P. W., & Lee, C. K. (2019, July). Sensor based dynamic hand gesture recognition by pairnet. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 994-1001).
[8] Chuang, W. C., Hwang, W. J., Tai, T. M., Huang, D. R., & Jhang, Y. J. (2019). Continuous finger gesture recognition based on flex sensors. Sensors, 19(18), 3986.
[9] Pathak, V., Mongia, S., & Chitranshi, G. (2015, December). A framework for hand gesture recognition based on fusion of Flex, Contact and accelerometer sensor. In 2015 Third International Conference on Image Information Processing (ICIIP) (pp. 312-319). IEEE.
[10] Nisar, O., Imtiaz, M. A., Hussain, S., & Saleem, O. Performance Optimization of a Flex Sensor Based Glove for Hand Gestures Recognition and Translation.
[11] Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: a critical review. sensors, 14(7), 11957-11992.
[12] Chang, K. H. (2014). Bluetooth: a viable solution for IoT?[Industry Perspectives]. IEEE Wireless Communications, 21(6), 6-7.
[13] Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable e-textile technologies: A review on sensors, actuators and control elements. Inventions, 3(1), 14.
[14] 周文妍. (2020). Sensor-Based Gesture Detection Using Bidirectional LSTM with Self-Attention and Conditional Random Field. 臺灣師範大學資訊工程學系學位論文.