簡易檢索 / 詳目顯示

研究生: 林聖裕
Lin, Shen-Yu
論文名稱: 數位彎曲感測器應用於手指手勢辨識系統開發之研究
Digital Flex Sensors Applied to the Development of Finger Gesture Recognition System
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 44
中文關鍵詞: 穿戴式裝置智慧手套系統整合手指手勢辨識系統手勢辨識應用手勢偵測數位彎曲感測器
DOI URL: http://doi.org/10.6345/NTNU202001223
論文種類: 學術論文
相關次數: 點閱:185下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將基於感測器(Sensor-based)手指手勢辨識系統的軟硬體整合,利用數位彎曲感測器(Digital FlexSensor)用於偵測手指動作,且穿戴式裝置的製作是以手套的方式呈現,演算法則上包含手勢資料的收集、手勢偵測、手勢辨識以及實際應用皆進行整合,讓整個手指手勢辨識系統能夠完整呈現。
    另外本論文將目前基於感測器的手勢辨識論文中幾乎未提及的手勢偵測納入至手勢辨識的系統之中。在實驗中透過定義的5種前景手勢及4種手勢指令個別讓Gesture Classification及Gesture Detection的類神經網路訓練以及辨識,使得將時間序列中較難以解決的前景手勢及背景手勢分離問題有效解決,並且透過使用者穿戴智慧手套做出手勢動作以實現實際應用。

    摘要 i 表目錄 iii 圖目錄 iv 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 5 第二章 實驗方法 6 2-1 元件探討 6 2-2 數位彎曲感測器工作原理 8 2-3 智慧手套電路設計圖 9 2-4 智慧手套成品 10 第三章 演算法則介紹 12 3-1 手勢資料收集方式及處理 12 3-2 手勢辨識系統架構 13 3-2-1 Input Signal 14 3-2-2 Gesture Detection 19 3-2-3 Gesture Classification 24 3-2-4 Command Recognition 26 3-2-5 Application 27 第四章 實驗結果 29 4-1 手指手勢介紹 29 4-2 Gesture Detection 34 4-3 Gesture Classification &Command Recognition 38 4-4 Application 40 第五章 結論 42 參考文獻 43

    [1] Rautaray, S. S., & Agrawal, A. (2015). Vision based hand gesture recognition for human computer interaction: a survey. Artificial intelligence review, 43(1), 1-54.

    [2] Gupta, H. P., Chudgar, H. S., Mukherjee, S., Dutta, T., & Sharma, K. (2016). A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensors. IEEE Sensors Journal, 16(16), 6425-6432.

    [3] Kim, M., Cho, J., Lee, S., & Jung, Y. (2019). Imu sensor-based hand gesture recognition for human-machine interfaces. Sensors, 19(18), 3827.

    [4] Minto, L., & Zanuttigh, P. (2015). Exploiting silhouette descriptors and synthetic data for hand gesture recognition.

    [5] Memo, A., & Zanuttigh, P. (2018). Head-mounted gesture controlled interface for human-computer interaction. Multimedia Tools and Applications, 77(1), 27-53.

    [6] 朱晏呈. (2019). Feedforward Neural Networks 於連續手勢辨識之研究. 臺灣師範大學資訊工程學系學位論文.

    [7] Jhang, Y. J., Chu, Y. C., Tai, T. M., Hwang, W. J., Cheng, P. W., & Lee, C. K. (2019, July). Sensor based dynamic hand gesture recognition by pairnet. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 994-1001).

    [8] Chuang, W. C., Hwang, W. J., Tai, T. M., Huang, D. R., & Jhang, Y. J. (2019). Continuous finger gesture recognition based on flex sensors. Sensors, 19(18), 3986.

    [9] Pathak, V., Mongia, S., & Chitranshi, G. (2015, December). A framework for hand gesture recognition based on fusion of Flex, Contact and accelerometer sensor. In 2015 Third International Conference on Image Information Processing (ICIIP) (pp. 312-319). IEEE.

    [10] Nisar, O., Imtiaz, M. A., Hussain, S., & Saleem, O. Performance Optimization of a Flex Sensor Based Glove for Hand Gestures Recognition and Translation.

    [11] Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: a critical review. sensors, 14(7), 11957-11992.

    [12] Chang, K. H. (2014). Bluetooth: a viable solution for IoT?[Industry Perspectives]. IEEE Wireless Communications, 21(6), 6-7.

    [13] Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable e-textile technologies: A review on sensors, actuators and control elements. Inventions, 3(1), 14.

    [14] 周文妍. (2020). Sensor-Based Gesture Detection Using Bidirectional LSTM with Self-Attention and Conditional Random Field. 臺灣師範大學資訊工程學系學位論文.

    下載圖示
    QR CODE