研究生: |
方偉業 Fong, Wai-Yip |
---|---|
論文名稱: |
增補低劑量咖啡因對高強度反覆跑步衝刺表現之急性影響 Acute Effect of Low Dose Caffeine Supplementation on Multiple Sprint Running Performance |
指導教授: |
何仁育
Ho, Jen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 高強度間歇訓練 、運動增能劑 、籃球運動 |
英文關鍵詞: | high-intensity interval training, ergogenic supplement, basketball |
DOI URL: | http://doi.org/10.6345/NTNU202000932 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的︰本研究旨在探討每公斤體重3毫克低劑量咖啡因增補 (caffeine, CAF) 對於高強度反覆跑步衝刺表現之影響。方法︰本研究招募12名大專甲組男子籃球員 (年齡︰20.1 ± 1.2歲、身高︰185.6 ± 6.7公分、體重︰85.6 ± 9.2公斤),以雙盲、平衡次序與重複量數進行CAF以及同劑量安慰劑 (placebo, PLA) 增補處理,在增補後一小時後進行高強度反覆跑步衝刺測驗 (2組12 × 30 m),反覆衝刺間休息30秒,組間休息4分鍾,並收集反覆衝刺測驗的平均衝刺時間、最快衝刺時間、最慢衝刺時間、衝刺總時間、疲勞增加率、心跳率和詢問運動自覺程度以及在休息時、增補1小時後及衝刺後3分鍾檢測血乳酸,以重複量數二因子變異數分析進行統計。結果︰第二組 (共12趟) 的平均衝刺時間、疲勞增加率、心跳率以及運動自覺程度,不管CAF和PLA處理都會比第一組表現 (共12趟) 為差。整體平均衝刺時間CAF比PLA有減少的趨勢 (p=0.55)。整體衝刺的最慢衝刺時間方面,CAF是短於PLA (CAF vs PLA, 4.828 ± 0123s vs 4.889 ± 0162s)。在第二組的衝刺平均衝刺時間表現方面中,不論那個區段CAF是顯著低於PLA (CAF vs PLA, 4.675 ± 0148s vs 4.732 ± 0149s)。在第二組衝刺運動自覺程度表現方面,在第一個區段與第二個區段中,CAF是顯著低於PLA (CAF vs PLA, 16 ± 3, 18 ± 2 vs 18 ± 3, 19 ± 1)。關於最快衝刺時間、衝刺總時間、疲勞增加率、心跳率以及血乳酸,CAF與PLA均無顯著差異。結論︰每公斤體重3毫克低劑量CAF增補可能透過運動自覺程度的降低,進而改善第二組高強度反覆跑步衝刺表現,即高強度反覆跑步衝刺的後期表現。
Purpose: The aim of this study was to examine acute effect of low dose caffeine (3 mg/kg CAF) supplementation on multiple sprint running performance. Methods: Using a double-blind, counter-balanced order, and repeated measures design, 12 male division one college basketball players (Age: 20±1.2, Height(cm): 185.6 ± 6.7, Weight(kg): 85.6 ± 9.2) ingested a gelatin capsule containing either caffeine (3 mg/kg, CAF) or placebo (PLA) 1 hr before performing an indoor multiple sprint running trial (2 sets of 12 × 30 m; repeated at 30-s intervals; 4-min rest intervals between 2 sets). Sprint times were recorded via smart speed PRO and earlobe blood samples were drawn to evaluate rest, pretest and posttest lactate concentrations. Heart rate was monitored continuously throughout the tests, with RPE recording after every sprint. Results: Average sprint time, fatigue, heart rate, and RPE were significantly greater in the 2nd set than in the first set, regardless of supplementation. However, CAF supplementation resulted in a trend reduction of average sprint time (p=.055) and a significant lower of slowest sprint time (p<.05; CAF vs PLA, 4.828 ± 0123 s vs 4.889 ± 0162 s). In the 2nd set, the average sprint time of CAF supplementation was significantly lower than PLA supplementation, regardless of stages (CAF vs PLA 4.675 ± 0148 s vs 4.732 ± 0149 s). In addition, RPE of CAF supplementation was significantly lower than PLA supplement in the first and second stage (CAF vs PLA, 16 ± 3, 18 ± 2 vs 18 ± 3, 19 ± 1). In contrast, there were no significant effects of CAF supplementation on fastest sprint time, total sprint time, fatigue, heart rate, and lactate. Conclusion: Low does (3mg/kg) caffeine supplementation can improve average sprint time of second set of multiple sprint running trial by reducing rating of perceived exertion.
林文煌 (1996)。咖啡因與運動能力。中華體育季刊,10(3),130-140。
林正常、王鶴森、何仁育、吳柏翰、吳志銘、李佳倫、周峻忠、林信甫、徐孟達、郭堉圻、傅正思、劉錦謀、鄭景峰 & 黎圓 (譯) (2017)。運動生理學︰體適能與運動表現的理論與應用。新北市:藝軒。(Power, S. K., & Holey, E T., 2015)
李佳倫、鄭景峰 (2011)。攝取咖啡因對心率變異性及反覆高強度衝刺的影響。體育學報,44(3),351-365。
何正峰、李文志、王錠堯 (2008)。兩週不同型態跑步訓練對有氧及無氧耐力之影響。運動生理暨體能學報,(8),81-89。
何正峰、石俊益、詹貴惠、王錠堯 (2012)。上坡高強度間歇訓練對籃球運動員有氧能力與下肢動力的影響。大專體育學刊,14(4),476-482。
趙強 (2007)。食品新知。取自https://reurl.cc/QdM9M0
Astorino, T. A., & Roberson, D. W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. The Journal of Strength & Conditioning Research, 24(1), 257-265.
Burke, L. M. (2008). Caffeine and sports performance. Applied Physiology, Nutrition, and Metabolism, 33(6), 1319-1334.
Błaszczyk-Bębenek, E., Piórecka, B., Kopytko, M., Chadzińska, Z., Jagielski, P., … Schlegel-Zawadzka, M. (2018). Evaluation of caffeine consumption among pregnant women from southern poland. International Journal of Environmental Research and Public Health, 15(11), 2373-2382.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381.
Carr, A., Dawson, B., Schneiker, K., Goodman, C., & Lay, B. (2008). Effect of caffeine supplementation on repeated sprint running performance. Journal of Sports Medicine and Physical Fitness, 48(4), 472-478.
Clausen, T. (1996). Long-and short-term regulation of the Na+-K+-pump in skeletal muscle. Physiology, 11(1), 24-30.
Collomp, K., Ahmaidi, S., Chatard, J. C., Audran, M., & Prefaut, C. (1992). Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology and Occupational Physiology, 64(4), 377-380.
Davis, J. K., & Green, J. M. (2009). Caffeine and anaerobic performance ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813-832.
Desbrow, B., Biddulph, C., Devlin, B., Grant, G. D., Anoopkumar-Dukie, S., & Leveritt, M. D. (2012). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115-120.
Del Coso, J., Muñoz-Fernández, V. E., Muñoz, G., Fernández-Elías, V. E., Ortega, J. F., Hamouti, N., ... Muñoz-Guerra, J. (2012). Effects of a caffeine-containing energy drink on simulated soccer performance. PloS one, 7(2), 1-8.
Duncan, M. J., Dobell, A. P., Caygill, C. L., Eyre, E., & Tallis, J. (2019). The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. European Journal of Sport Science, 19(1), 103-111.
Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. EuropeanJournal of Sport Science, 13(4), 392-399.
Ermolao, A., Zanotto, T., Carraro, N., Fornasier, T., Zaccaria, M., Neunhaeuserer, D., … Bergamin, M. (2017). Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players. Journal of Exercise Rehabilitation, 13(1), 55-61.
Evans, S. M., & Griffiths, R. R. (1991). Caffeine tolerance and choice in humans. Psychopharmacology, 108(1-2), 51-59.
Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability—Part I. Sports Medicine, 41(8), 673-694.
Glade, M. J. (2010). Caffeine—not just a stimulant. Nutrition, 26(10), 932-938.
Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35(9), 757-777.
Glaister, M., Howatson, G., Abraham, C. S., Lockey, R. A., Goodwin, J. E., Foley, P., & McInnes, G. (2008). Caffeine supplementation and multiple sprint running performance. Medicine & Science in Sports & Exercise, 40(10), 1835-1840.
Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78(3), 867-874.
Graham, T. E., Helge, J. W., MacLean, D. A., Kiens, B., & Richter, E. A. (2000). Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. The Journal of Physiology, 529(3), 837-847.
Graham, T. E. (2001). Caffeine and exercise. Sports Medicine, 31(11), 785-807.
Hazell, T. J., Macpherson, R. E., Gravelle, B. M., & Lemon, P. W. (2010). 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. European Journal of Applied Physiology, 110(1), 153-160.
Lee, C. L., Cheng, C. F., Lin, J. C., & Huang, H. W. (2012). Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. European Journal of Applied Physiology, 112(6), 2107-2116.
Lindinger, M. I., Willmets, R. G., & Hawke, T. J. (1996). Stimulation of Na+, K+‐pump activity in skeletal muscle by methylxanthines: evidence and proposed mechanisms. Acta Physiologica Scandinavica, 156(3), 347-353.
McInnes, S. E., Carlson, J. S., Jones, C. J., & McKenna, M. J. (1995). The physiological load imposed on basketball players during competition. Journal of Sports Sciences, 13(5), 387-397.
Monks, L., Seo, M. W., Kim, H. B., Jung, H. C., & Song, J. K. (2017). High-intensity interval training and athletic performance in taekwondo athletes. The Journal of Sports Medicine and Physical Fitness, 57(10), 1252-1260.
Narazaki, K., Berg, K., Stergiou, N., & Chen, B. (2009). Physiological demands of competitive basketball. Scandinavian Journal of Medicine & Science in Sports, 19, 425–432.
Nehlig, A. (2018). Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews, 70(2), 384-411.
Pasman, W. J., Van Baak, M. A., Jeukendrup, A. E., & De Haan, A. (1994). The effect of different dosages of caffeine on endurance performance time. International Journal of Sports Medicine, 16(4), 225-230.
Paton, C. D., Hopkins, W. G., & Vollebregt, L. I. S. A. (2001). Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Medicine & Science in Sports & Exercise, 33(5), 822-825.
Pickering, C., & Kiely, J. (2019). Do non-responders to exercise exist—and if so, what should we do about them? Sports Medicine, 49(1), 1-7.
Renaud, J. M. (2002). Modulation of force development by Na+, K+, Na+ K+ pump and K ATP channel during muscular activity. Canadian Journal of Applied Physiology, 27(3), 296-315.
Sawynok, J., & Liu, X. J. (2003). Adenosine in the spinal cord and periphery: release and regulation of pain. Progress in Neurobiology, 69(5), 313-340.
Sökmen, B., Armstrong, L. E., Kraemer, W. J., Casa, D. J., Dias, J. C., Judelson, D. A., … Maresh, C. M. (2008). Caffeine use in sports: considerations for the athlete. The Journal of Strength & Conditioning Research, 22(3), 978-986.
Spencer, M., Bishop, D., Dawson, B., & Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities. Sports Medicine, 35(12), 1025-1044.
Spriet LL., Lindinger MI., McKelvie RS., Heigenhauser GJ., & Jones NL (1989). Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of Applied Physiology 66(1), 8–13.
Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44(2), 175-184.
Turley, K. R., Eusse, P. A., Thomas, M. M., Townsend, J. R., & Morton, A. B. (2015). Effects of different doses of caffeine on anaerobic exercise in boys. Pediatric Exercise Science, 27(1), 50-56.
Wiles, J. D., Bird, S. R., Hopkins, J., & Riley, M. (1992). Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. British Journal of Sports Medicine, 26(2), 116-120.