研究生: |
吳靖揚 |
---|---|
論文名稱: |
透明導電層ITO生長機制與特性分析及太陽能電池應用 |
指導教授: | 胡淑芬 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 透明導電層 、銦錫氧化物 、太陽能電池 |
英文關鍵詞: | solar cell, ITO |
論文種類: | 學術論文 |
相關次數: | 點閱:229 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在於探討銦錫氧化物之光電特性,進而應用至矽奈米柱太陽能電池之上電極,電極主要功用為收集載子,因太陽能電池本身為吸收光並將光轉換為電之元件,因此其電極必須具備透光度極高特性,而電極本身導電度品質亦會影響到收集載子之效率,故高導電特性電極亦為必要條件。本研究之銦錫氧化物採用射頻磁控濺鍍法製作,經由一系列鍍膜參數探討出最佳鍍膜條件,再經由真空退火法尋I求最佳退火溫度與時間。基板溫度300℃濺鍍出之銦錫氧化物經過500℃、20分鐘真空退火後,於可見光區300 nm至700 nm波段之平均穿透率可高達90% 以上,而片電阻亦可低於10Ω/□。X-ray繞射分析部分,繞射峰包含(221)、(222)、(400)、(440)與(662),且可發現隨退火溫度上升,(222)繞射強度有漸增趨勢,其薄膜結晶性更佳,而薄膜表面粗糙度亦可低於2 nm。
銦錫氧化物應用於太陽能電池上電極,對於矽奈米柱直徑為400 nm之p+-i-n結構太陽能電池而言,整體光電流密度從4.47 mA/cm2提升至27.6 mA/cm2,光轉電效率從0.45% 提升至4.73%,此乃透明導電層大幅縮短了載子行走距離,使電極之載子收集效率提升而導致光電流大幅增加,光轉電效率亦上升十倍之多。
[1] 陳宏仁、王立義與邱文英,“有機太陽電池之發展近況”,工業材料雜誌 192期,102-113,2002年12月。
[2] 楊素華與蔡泰成,“太陽能電池”,科學發展雜誌390期,2005年6月。
[3] 郭禮青,“太陽光電技術介紹”,工業材料雜誌182期,137-140, 2002年2月。
[4] 鍾云昇,“矽晶太陽電池用抗反射層鍍膜技術與設備探討”,太陽光電製程設備技術專輯290期,2007年5月。
[5] T. Sato, T. Sugiura, M. Ohtsubo, S. Matsuno, M. Konagai, Jpn. J. Appl. Phys. 46, 6796-6800 (2007)
[6] T. Yagi, Y. Uraoka, T. Fuyuki, Solar Energy Mater. Solar Cells, 90, 2647–2656 (2006)
[7] F. C. Marques, IEEE Trans. Electron Devices, 45, 7 (1998)
[8] L. Hu and G. Chen, Nano Lett. 7, 11 (2007)
[9] O. L. Muskens, J. G. Rivas, R. E. Algra, Erik P. A. M. Bakkers, and A. Lagendijk, Nano Lett. 8, 9 (2008)
[10] B. M. Kayes, H. A. Atwater and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005)
[11] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature, 449, 18 (2007)
[12] K. Peng, X. W. and S. T. Lee, Appl. Phys. Lett. 92, 163103 (2008)
[13] T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose and S. Christiansen, Nanotechnology, 19, 295203 (2008)
[14] L. Tsakalakos, J. Balch, J. Fronheiser and B. A. Korevaar, “Silicon nanowire solar cells”, Appl. Phys. Lett. 91, 233117 (2007)
[15] E. C. Garnett and P. Yang, J. Am. Ceram. Soc.130, 9224-9225 (2008)
[16] 許國銓,“科技玻璃-高性能透明導電膜玻璃”,材料與社會,第84期,110-119 (1993)
[17] K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102, 1-46 (1983)
[18] 古俊能,“ITO在有機發光二極體之應用”,工業材料雜誌第188期,133-136 (2002)
[19] B. S. Chiou, S. T. Hsieh and W. F. Wu, J. Am. Ceram. Soc. 77, 1740-1744 (1994)
[20] John C. C. Fan and F. J. Bachner, J. Electorchem. Soc. 122, 1719-1724 (1975)
[21] Y. Shigesato, Y. Hayashi and T. Haranoh, Appl. Phys. Lett. 61, 73-75 (1992)
[22] W. F. Wu, B. S. Chiou and S. T. Hsieh, Semicond. Sci. Technol. 9, 1242-1249 (1994)
[23] P. Nath, R. F. Bunshah, B. M. Basol, O. M. Staffsud, Thin Solid Films, 72, 463-468 (1980)
[24] J. Kane, H. P. Schweizer and W. Kern, Thin Solid Films, 29, 255-163 (1975)
[25] H. Kobayashi, T. Ishida, Y. Nakato, and H. Tsubomura, J. Appl. Phys. 69, 1736 (1991)
[26] M. Buchanan, J. B. Webb, and D. F. Williams, Appl. Phys. Lett. 37, 213 (1980)
[27] B. S. Chiou, S. T. Hsieh, Thin Solid Films, 229, 146-155 ( 1993)
[28] T. Karasawa, Y. Miyata, Thin Solid Films, 223, 135-139 ( 1993)
[29] C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim and C. Yoon, Thin Solid Films, 258, 274-278 (1995)
[30] S. Uthanna, P. S. Reddy, B. S. Naidu and P. J. Reddy, Vacuum, 47, 91-93 (1996)
[31] M. Kamei, Y. Shigesato and S. Takaki, Thin Solid Films, 259, 38-45 (1995)
[32] R. X. Wang, C. D. Beling, S. Fung, A. B. Djuri i , C. C. Ling, and S. Li, J. Appl. Phys. 97, 033504 (2005)
[33] C. Guillén and J. Herrero, J. Appl. Phys. 101, 073514 (2007)
[34] C. H. Chung, Y. W. Ko, Y. H. Kim, C. Y. Sohn, H. Y. Chu, S. H. Ko Park and J. H. Lee, Thin Solid Films, 491, 294-297 (2005)
[35] S. I. Jun, T. E. McKnight, M. L. Simpson and P. D. Rack, Thin Solid Films, 476, 59-64 (2005)
[36] C. Guillén, J. Herrero, Vacuum, 80, 615-620 (2006)
[37] L Kerkache, A Layadi, E Dogheche and D Remiens, J. Phys. D: Appl. Phys. 39, 184-189 (2006)
[38] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Adv. Funct. Mater.16, 387-394 (2004)
[39] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S. T. Lee, Appl. Phys. Lett. 90, 163123 (2007)
[40] T. Markvart, “Solar Electricity,” John Wiley & Sons, New York, (1994).
[41] S.O. Kasap, International edition, Prentice-Hall, Inc.
[42] 雷永泉、萬群與石永康,“新能源材料”,新文京出版社
[43] 林明獻,“太陽電池技術入門”,第二版,全華出版社
[44] K. L. Chopra, Appl. Phys. Lett. 5,140-142 (1965)
[45] E. Ahilea and A. A. Hirsch, J. Appl. Phys. 13, 5601-5608 (1971)
[46] T. Minami, Semicond. Sci. Technol. 20, 35-44 (2005)
[47] K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102, 1-46 (1983)
[48] M. Quaas, C. Eggs and H. Wulff, Thin Solid Films, 332, 277-281 (1998)
[49] I. Elfallal, R. D. Rilkington and A. E. Hill, Thin Solid Films, 223, 303-310 (1993)
[50] J. Ederth, “Electrical Transport in Nanoparticle Thin Films of Gold and Indium Tin Oxide”, doctoral degree dissertation, Uppsala University, 4-6 (2003)
[51] J. C. C. Fan and F. J. Bachner, J. Electrochemi. Soc. 12, 1719-1724 (1975)
[52] J. L. Vossen, RCA Rev. 32, 289-296, (1971)
[53] P. Nath and R. F. Bunshah, Thin Solid Films, 69, 63-68 (1980)
[54] M. Hecq, A. Dubois, and J. V. Cakenberghe, Thin Solid Films, 18, 117-125 (1973)
[55] W. F. Wu and B. S. Chiou, Thin Solid Films, 247, 201-207 (1994)
[56] V. S. Reddy, K. Das, A. Dhar and S. K. Ray, Semicond. Sci. Technol. 21, 1747–1752 (2006)
[57] Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Vacuum, 75, 183-188 (2004)
[58] E. Burstein, Phys. Rev. 93, 632-633 (1954)
[59] T. S. Moss, Phys. Soc. London Sec. B, 67, 775-782 (1954)
[60] L. Gupta, A. Mansingh and P. K. Srivastava, Thin Solid Films, 176, 33-44 (1989)
[61] B. Streetman, “Solid State Electronic Devices”, Prentice-Hall, Inc., 439 (1995)
[62] C. Kittel, “Introduction to Solid State Physics”, Eight edition, John Wily & Sons, Inc.
[63] Y. S. Jung and S. S. Lee, J. Crystal Growth, 259, 343-351 (2003)
[64] Y. Hoshi, T. Kiyomura, Thin Solid Films, 411, 36-41 (2002)
[65] D. Kim, Y. Han, J. S. Cho and S. K. Koh, Thin Solid Films, 377-378, 81–86 (2000)
[66] C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. K and C. Yoon, Thin Solid Films, 258, 274–278 (1995)
[67] M. Bender, Appl. Phys. A, 69, 397–401 (1999)
[68] A. Rogozin, N. Shevchenko, M. Vinnichenko, F. Prokert, V. Cantelli, A. Kolitsch, and W. Möller, Appl. Phys. Lett. 85, 2(2004)
[69] A. Rogozin, M. Vinnichenko, N. Shevchenko, U. Kreissig, A. Kolitsch and W. Moller, Scripta Materialia, 60, 199-202 (2009)
[70] H. Morikawa, M. Fujita, Thin Solid Films, 339, 309–313 (2001)
[71] L. Kerkache, A. Layadi, E. Dogheche and D. Rémiens, Journal Physics D: Applied Physics, 39, 184–189 (2006)
[72] H. Fujiwara, T. Kaneko and M. Kondo, Appl. Phys. Lett. 91, 133508 (2007)
[73] H. Fujiwara and M. Kondo, J. Appl. Phys. 101, 054516 (2007)
[74] H. Fujiwara and M. Kondo, Appl. Phys. Lett. 86, 032112 (2005)
[75] M. Taguchi, A. Terakawa and E. Maruayama and M. Tanaka, Prog. Photovolt : Res. Appl. 13, 481-488 (2005)
[76] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, Appl. Phys. Lett. 92, 063510 (2008)
[77] N. Manavizadeh, F. A. Boroumand, E. A. Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari and M. A. Rasouli, Thin Solid Films, 517, 2324–2327 (2009)