簡易檢索 / 詳目顯示

研究生: 蔡淑祺
TSAI, Shu-Chi
論文名稱: 單次有氧健身運動及中鏈脂肪酸補充對中年人抑制控制之影響:事件關聯電位研究
Effect of Acute Aerobic Exercise and MCT Supplement on Inhibition Control in Middle-aged Adults: An Event-Related Potential Study
指導教授: 張育愷
Chang, Yu-Kai
口試委員: 洪聰敏
HUNG, Tsung-Min
陳宗與
CHEN, Chung-Yu
張育愷
CHANG, Yu-Kai
口試日期: 2023/07/31
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 中年人單次運動酮體認知表現事件關聯電位
英文關鍵詞: middle-aged, acute exercise, ketone body, cognitive function, event-related potential
研究方法: 實驗設計法準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301344
論文種類: 學術論文
相關次數: 點閱:139下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中年族群為未來老化主要人口,且認知功能也在此時期開始漸漸下降,因此如何改善或預防認知功能退化是需要被關注之議題。一些研究指出,中強度有氧運動對中年人認知功能確實可產生效益,另外,血清中β-羥基丁酸 (βOHB) 對工作記憶可以產生積極的效益,但對於其餘認知領域仍鮮少被討論。因此,本研究目的為探討中鏈脂肪酸補充與單次有氧健身運動對於抑制控制、P3振幅之影響。本研究共招募40位中年族群,依組內平衡設計隨機進行三種情境,有氧健身運動、中鏈脂肪酸補充與影片觀賞。使用二因子混合變異數分析檢測抑制控制任務表現、P3振幅與酮體濃度變化。本研究結果顯示,有氧健身運動情境與控制情境相比,抑制控制有顯著進步,中鏈脂肪酸補充則沒有發現相同效益;P3振幅在三種情境沒有顯著差異,N450則在有氧情境有顯著效益;βOHB在中鏈脂肪酸補充後有顯著提升。整體而言,單次20分鐘中等強度有氧健身運動可以做為中年族群提升抑制控制之運動模式,然而單次20公克中鏈脂肪酸補充不具有同等效益。

    The middle-aged is the main population of the future aging, and cognitive function also starts to decline during this period, so how to improve or prevent cognitive degeneration is an important issue. Some studies suggest that moderate-intensity aerobic exercise has benefits in middle-aged adults, and that beta-hydroxybutyric acid (βOHB) has positive benefits on working memory, but rarely been discussed for the remaining cognitive domains. Therefore, the purpose of this study was to investigate the effects of medium-chain fatty acid supplementation and acute aerobic exercise on inhibitory control, P3 amplitude. In this study, 40 middle-aged individuals were recruited and randomized to three session, aerobic exercise (AE), medium-chain fatty acid supplementation (MCT), and movie viewing (CON), in a within group counter balanced design. Inhibitory control, P3 amplitude and βOHB were analyzed separately with 2- way mixed variance analysis. The results of this study showed that AE showed a significant improvement in inhibitory control compared to the CON, while the same benefit was not found in MCT; P3 amplitude no significantly different among the three session, N450 amplitude significantly improved in AE; βOHB showed significantly increases after MCT. Overall, acute 20 mins moderate aerobic exercise can improve inhibitory control, however, single 20 grams MCT supplement does not provide the same benefits.

    第壹章 緒論 1 第一節 問題背景1 第二節 研究目的 3 第三節 研究假設 3 第四節 操作性名詞定義解釋 3 第貳章 文獻探討 5 第一節 中年人與執行功能 5 第二節 單次有氧健身運動、中年人與執行功能 7 第三節 單次有氧健身運動、中年人與事件關聯電位 9 第四節 中鏈脂肪酸與酮體 11 第五節 單次中鏈脂肪酸補充、酮體與執行功能 13 第六節 文獻總結 16 第參章 研究方法與步驟 17 第一節 研究參與者 17 第二節 研究設計 17 第三節 研究流程 19 第四節 研究工具 21 第五節 實驗介入 25 第六節 抑制控制測驗 26 第七節 酮體測量 27 第八節 資料處理 27 第九節 資料統計分析 28 第肆章 結果 30 第一節 參與者背景變項 30 第二節 參與者平均心跳 30 第三節 抑制控制 31 第四節 事件關聯電位 36 第五節 酮體濃度 40 第伍章 討論 42 第一節 抑制控制 42 第二節 事件關聯電位 46 第三節 研究限制與未來方向 49 第陸章 結論 51 第柒章 參考文獻 52

    Abolhassani, N., Leon, J., Sheng, Z., Oka, S., Hamasaki, H., Iwaki, T., & Nakabeppu, Y. (2017). Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mechanisms of Ageing and Development, 161 (Pt A), 95-104. https://doi.org/10.1016/j.mad.2016.05.005

    Allan, J. L., McMinn, D., & Daly, M. (2016). A bidirectional relationship between executive function and health behavior: Evidence, implications, and future directions. Frontiers in Neuroscience, 10, 386. https://doi.org/10.3389/fnins.2016.00386

    Armstrong, B. C., Ruiz-Blondet, M. V., Khalifian, N., Kurtz, K. J., Jin, Z., & Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing, 166, 59-67. https://doi.org/https://doi.org/10.1016/j.neucom.2015.04.025

    Ashton, J. S., Roberts, J. W., Wakefield, C. J., Page, R. M., MacLaren, D. P. M., Marwood, S., & Malone, J. J. (2021). The effects of medium chain triglyceride (MCT) supplementation using a C8:C10 ratio of 30:70 on cognitive performance in healthy young adults. Physiology & Behavior, 229, 113252. https://doi.org/https://doi.org/10.1016/j.physbeh.2020.113252

    Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S. J. R., Walker, M. C., & Williams, R. S. B. (2018). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurology, 17 (1), 84-93. https://doi.org/10.1016/s1474-4422(17)30408-8

    Avgerinos, K. I., Egan, J. M., Mattson, M. P., & Kapogiannis, D. (2020). Medium chain triglycerides induce mild ketosis and may improve cognition in Alzheimer's disease. A systematic review and meta-analysis of human studies. Ageing Research Reviews, 58, 101001.
    https://doi.org/10.1016/j.arr.2019.101001

    Berchicci, M., Spinelli, D., & Di Russo, F. (2016). New insight[s into old waves. matching stimulus- and response-locked ERPs on the same time-window. Biological Psychology, 117, 202-215. https://doi.org/https://doi.org/10.1016/j.biopsycho.2016.04.007

    Bettcher, B. M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C. L., Stephens, M., Walsh, C. M., & Kramer, J. H. (2016). Neuroanatomical substrates of executive functions: Beyond prefrontal structures. Neuropsychologia, 85, 100-109. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2016.03.001

    Boateng, L., Ansong, R., Owusu, W. B., & Steiner-Asiedu, M. (2016). Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana Medical Journal, 50(3), 189-196.
    Boere, K., Lloyd, K., Binsted, G., & Krigolson, O. E. (2023). Exercising is good for the brain but exercising outside is potentially better. Scientific Reports, 13 (1), 1140. https://doi.org/10.1038/s41598-022-26093-2

    Bogacz, R. (2013). Speed-accuracy trade-off. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 1-4)
    https://doi.org/10.1007/978-1-4614-7320-6_319-1

    Bugg, J. M., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2007). Age differences in stroop interference: contributions of general slowing and task-specific deficits. Aging, Neuropsychology, and Cognition, 14 (2), 155-167. https://doi.org/10.1080/138255891007065

    Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., Lambert, E., Leitzmann, M., Milton, K., Ortega, F. B., Ranasinghe, C., Stamatakis, E., Tiedemann, A., Troiano, R. P., van der Ploeg, H. P., Wari, V., & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54 (24), 1451-1462. https://doi.org/10.1136/bjsports-2020-102955

    Burdge, G. C., & Calder, P. C. (2015). Introduction to fatty acids and lipids. World Review of Nutrition and Dietetics, 112, 1-16. https://doi.org/10.1159/000365423
    Carson, R. P., Herber, D. L., Pan, Z., Phibbs, F., Key, A. P., Gouelle, A., Ergish, P., Armour, E. A., Patel, S., & Duis, J. (2021). Nutritional formulation for patients with angelman syndrome: A randomized, double-blind, placebo-controlled study of exogenous ketones. The Journal of Nutrition, 151 (12), 3628-3636. https://doi.org/10.1093/jn/nxab284

    Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences U S A, 97 (4), 1944-1948. https://doi.org/10.1073/pnas.97.4.1944

    Chang, Y.-K. (2016). Acute exercise and event-related potential. In (pp. 105-130). https://doi.org/10.1016/B978-0-12-800778-5.00005-0

    Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54 (2), 289-300. https://doi.org/10.1111/psyp.12784

    Chang, Y. K., Chen, F. T., Kuan, G., Wei, G. X., Chu, C. H., Yan, J., Chen, A. G., & Hung, T. M. (2019). Effects of acute exercise duration on the inhibition aspect of executive function in late middle-aged adults. Frontiers in Aging Neuroscience, 11, 227. https://doi.org/10.3389/fnagi.2019.00227

    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/https://doi.org/10.1016/j.brainres.2012.02.068

    Cools, R., & Arnsten, A. F. T. (2022). Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 47 (1), 309-328. https://doi.org/10.1038/s41386-021-01100-8

    Cooper, C. J. (1973). Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics, 16(5), 601-609. https://doi.org/10.1080/00140137308924551

    Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3 (8), 655-666. https://doi.org/10.1038/nrn894

    Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. Handbook of Clinical Neurology, 163, 197-219. https://doi.org/10.1016/b978-0-12-804281-6.00011-2

    Cunnane, S., Nugent, S., Roy, M., Courchesne-Loyer, A., Croteau, E., Tremblay, S., Castellano, A., Pifferi, F., Bocti, C., Paquet, N., Begdouri, H., Bentourkia, M., Turcotte, E., Allard, M., Barberger-Gateau, P., Fulop, T., & Rapoport, S. I. (2011). Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition, 27(1), 3-20. https://doi.org/10.1016/j.nut.2010.07.021

    Cunnane, S. C., Courchesne-Loyer, A., St-Pierre, V., Vandenberghe, C., Pierotti, T., Fortier, M., Croteau, E., & Castellano, C. A. (2016). Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease. Annals of the New York Academy of Sciences journal, 1367 (1), 12-20. https://doi.org/10.1111/nyas.12999

    Cunnane, S. C., Trushina, E., Morland, C., Prigione, A., Casadesus, G., Andrews, Z. B., Beal, M. F., Bergersen, L. H., Brinton, R. D., de la Monte, S., Eckert, A., Harvey, J., Jeggo, R., Jhamandas, J. H., Kann, O., la Cour, C. M., Martin, W. F., Mithieux, G., Moreira, P. I., Murphy, M. P., Nave, K.-A., Nuriel, T., Oliet, S. H. R., Saudou, F., Mattson, M. P., Swerdlow, R. H., & Millan, M. J. (2020). Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 19 (9), 609-633. https://doi.org/10.1038/s41573-020-0072-x

    da Silva, F. L. (2022). EEG: Origin and measurement. In C. Mulert & L. Lemieux (Eds.), EEG - fMRI: Physiological Basis, Technique, and Applications (pp. 23-48). https://doi.org/10.1007/978-3-031-07121-8_2

    Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750

    Diamond, A. (2016). Why improving and assessing executive functions early in life is critical. In Executive function in preschool-age children: Integrating measurement, neurodevelopment, and translational research. (pp. 11-43). American Psychological Association. https://doi.org/10.1037/14797-002

    Dienel, G. A. (2019). Brain glucose metabolism: Integration of energetics with function. Physiological Reviews, 99(1), 949-1045. https://doi.org/10.1152/physrev.00062.2017
    Dimock, M. (2019). Where millennials end and generation Z begins. https://policycommons.net/artifacts/616979/defining-generations/1597710/

    Doebel, S. (2020). Rethinking executive function and its development. Perspectives on Psychological Science, 15 (4), 942-956. https://doi.org/10.1177/1745691620904771
    Du, X., Li, J., Li, M., Yang, X., Qi, Z., Xu, B., Liu, W., Xu, Z., & Deng, Y. (2020). Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell & Bioscience, 10 (1), 26. https://doi.org/10.1186/s13578-020-00393-4

    Duell, N., Icenogle, G., Silva, K., Chein, J., Steinberg, L., Banich, M. T., Di Guinta, L., Dodge, K. A., Fanti, K. A., Lansford, J. E., Oburu, P., Pastorelli, C., Skinner, A. T., Sorbring, E., Tapanya, S., Uribe Tirado, L. M., Alampay, L. P., Al-Hassan, S. M., Takash, H. M. S., Bacchini, D., Chang, L., & Chaudhary, N. (2018). A cross-sectional examination of response inhibition and working memory on the Stroop task. Cognitive Development, 47, 19-31. https://doi.org/https://doi.org/10.1016/j.cogdev.2018.02.003

    Erdogdu, E., Kurt, E., Duru, A. D., Uslu, A., Başar-Eroğlu, C., & Demiralp, T. (2019). Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs). Cognitive Neurodynamics, 13 (6), 503-512. https://doi.org/10.1007/s11571-019-09544-x

    Evans, L. W., Stratton, M. S., & Ferguson, B. S. (2020). Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Natural Product Reports, 37 (5), 653-676. https://doi.org/10.1039/c9np00057g

    Fellows, R. P., Dahmen, J., Cook, D., & Schmitter-Edgecombe, M. (2017). Multicomponent analysis of a digital trail making test. The Clinical Neuropsychologist, 31(1), 154-167. https://doi.org/10.1080/13854046.2016.1238510

    Ferguson, H. J., Brunsdon, V. E. A., & Bradford, E. E. F. (2021). The developmental trajectories of executive function from adolescence to old age. Scientific Reports, 11 (1), 1382. https://doi.org/10.1038/s41598-020-80866-1

    Fernandes M. de Sousa, A., Medeiros, A. R., Del Rosso, S., Stults-Kolehmainen, M., & Boullosa, D. A. (2019). The influence of exercise and physical fitness status on attention: A systematic review. International Review of Sport and Exercise Psychology, 12 (1), 202-234. https://doi.org/10.1080/1750984X.2018.1455889

    Fisher, G. G., Chacon, M., & Chaffee, D. S. (2019). Chapter 2 - Theories of cognitive aging and work. In B. B. Baltes, C. W. Rudolph, & H. Zacher (Eds.), Work Across the Lifespan (pp. 17-45). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812756-8.00002-5

    Fortier, M., Castellano, C. A., Croteau, E., Langlois, F., Bocti, C., St-Pierre, V., Vandenberghe, C., Bernier, M., Roy, M., Descoteaux, M., Whittingstall, K., Lepage, M., Turcotte É, E., Fulop, T., & Cunnane, S. C. (2019). A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimer's and Dementia, 15 (5), 625-634. https://doi.org/10.1016/j.jalz.2018.12.017

    Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204. https://doi.org/10.1016/j.cortex.2016.04.023

    Fujihara, H., Megumi, A., & Yasumura, A. (2021). The acute effect of moderate-intensity exercise on inhibitory control and activation of prefrontal cortex in younger and older adults. Experimental Brain Research, 239 (6), 1765-1778. https://doi.org/10.1007/s00221-021-06086-9

    Giannos, P., Prokopidis, K., Lidoriki, I., Triantafyllidis, K. K., Kechagias, K. S., Celoch, K., Candow, D. G., Ostojic, S. M., & Forbes, S. C. (2022). Medium-chain triglycerides may improve memory in non-demented older adults: a systematic review of randomized controlled trials. BMC Geriatrics, 22 (1), 817. https://doi.org/10.1186/s12877-022-03521-6

    Gusatovic, J., Gramkow, M. H., Hasselbalch, S. G., & Frederiksen, K. S. (2022). Effects of aerobic exercise on event-related potentials related to cognitive performance: A systematic review. PeerJ, 10, e13604. https://doi.org/10.7717/peerj.13604

    Hadar, L., Trope, Y., & Ben-David, B. M. (2021). Aging impairs inhibitory control over incidental cues: A construal-level perspective. Psychological Science, 32 (9), 1442-1451. https://doi.org/10.1177/0956797621998316

    Hajcak, G., Klawohn, J., & Meyer, A. (2019). The utility of event-related potentials in clinical psychology. Annual Review of Clinical Psychology, 15, 71-95. https://doi.org/10.1146/annurev-clinpsy-050718-095457

    Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28 (2), 587-594. https://doi.org/10.1037/a0032634

    Hoyer, S., Oesterreich, K., & Wagner, O. (1988). Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? Journal of Neurology, 235 (3), 143-148. https://doi.org/10.1007/bf00314304

    Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. Journal of Clinical Medicine, 7 (11), 391. https://www.mdpi.com/2077-0383/7/11/391

    Hu, E., Du, H., Zhu, X., Wang, L., Shang, S., Wu, X., Lu, H., & Lu, X. (2018). Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience, 386, 315-325. https://doi.org/10.1016/j.neuroscience.2018.06.036

    Huang, B., & Chen, C. (2020). Stroop N450 reflects both stimulus conflict and response conflict. Neuroreport, 31 (12), 851-856. https://doi.org/10.1097/wnr.0000000000001454

    Imbir, K., Spustek, T., Bernatowicz, G., Duda, J., & Żygierewicz, J. (2017). Two aspects of activation: Arousal and subjective significance-behavioral and event-related potential correlates nvestigated by means of a modified emotional stroop task. Frontiers in Human Neuroscience, 11, 608. https://doi.org/10.3389/fnhum.2017.00608

    Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience & Biobehavioral Reviews, 128, 258-269. https://doi.org/10.1016/j.neubiorev.2021.06.026

    Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences 21 (22). https://doi.org/10.3390/ijms21228767

    Ji, Z., Feng, T., Mei, L., Li, A., & Zhang, C. (2019). Influence of acute combined physical and cognitive exercise on cognitive function: an NIRS study. PeerJ, 7, e7418. https://doi.org/10.7717/peerj.7418

    Kalanthroff, E., Davelaar, E. J., Henik, A., Goldfarb, L., & Usher, M. (2018). Task conflict and proactive control: A computational theory of the stroop task. Psychological Review, 125 (1), 59-82. https://doi.org/10.1037/rev0000083

    Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The journals of gerontology. Series B, Psychological sciences and social sciences, 64 (3), 356-363. https://doi.org/10.1093/geronb/gbp030

    Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology: Series B, 64B (3), 356-363. https://doi.org/10.1093/geronb/gbp030

    Kao, S.-C., Chen, F.-T., Moreau, D., Drollette, E., Amireault, S., Chu, C.-h., & Chang, Y.-K. (2022a). Acute effects of exercise engagement on neurocognitive function: A systematic review and meta-analysis on P3 amplitude and latency. International Review of Sport and Exercise Psychology, 1-43. https://doi.org/10.1080/1750984X.2022.2155488

    Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020b). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57 (7), e13425. https://doi.org/10.1111/psyp.13425

    Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28 (4), 155-164. https://doi.org/10.2114/jpa2.28.155

    Kawagoe, T., Onoda, K., & Yamaguchi, S. (2017). Associations among executive function, cardiorespiratory fitness, and brain network properties in older adults. Scientific Reports, 7, 40107. https://doi.org/10.1038/srep40107

    Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., Feusner, J. D., Garfinkel, S. N., Lane, R. D., Mehling, W. E., Meuret, A. E., Nemeroff, C. B., Oppenheimer, S., Petzschner, F. H., Pollatos, O., Rhudy, J. L., Schramm, L. P., Simmons, W. K., Stein, M. B., Stephan, K. E., Van den Bergh, O., Van Diest, I., von Leupoldt, A., & Paulus, M. P. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3 (6), 501-513. https://doi.org/10.1016/j.bpsc.2017.12.004
    Kiely, K. M. (2014). Cognitive Function. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life and Well-Being Research (pp. 974-978). Springer Netherlands. https://doi.org/10.1007/978-94-007-0753-5_426

    Killikelly, C., & Szűcs, D. (2013). Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence. Cortex, 49 (10), 2888-2903. https://doi.org/10.1016/j.cortex.2013.08.017

    Kitabchi, A. E., Umpierrez, G. E., Miles, J. M., & Fisher, J. N. (2009). Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 32 (7), 1335-1343. https://doi.org/10.2337/dc09-9032

    Konagai, C., Yanagimoto, K., Hayamizu, K., Han, L., Tsuji, T., & Koga, Y. (2013). Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clinical Interventions in Aging, 8, 1247-1257. https://doi.org/10.2147/cia.S50349

    Krigolson, O. E. (2018). Event-related brain potentials and the study of reward processing: Methodological considerations. International Journal of Psychophysiology, 132, 175-183. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2017.11.007

    Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging, 33 (2), 425.e419-427. https://doi.org/10.1016/j.neurobiolaging.2010.10.006

    Laguë-Beauvais, M., Brunet, J., Gagnon, L., Lesage, F., & Bherer, L. (2013). A fNIRS investigation of switching and inhibition during the modified stroop task in younger and older adults. Neuroimage, 64, 485-495. https://doi.org/10.1016/j.neuroimage.2012.09.042

    Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93 (3), 283-297. https://doi.org/10.1016/j.ijpsycho.2014.06.007

    Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47 (3), 663-670. https://doi.org/10.1016/j.neuropsychologia.2008.11.013

    Lin, T. Y., Liu, H. W., & Hung, T. M. (2021). The ketogenic effect of medium-chain triacylglycerides. Frontiers in Nutrition, 8, 747284. https://doi.org/10.3389/fnut.2021.747284

    Lin, X., Deng, J., Shi, L., Wang, Q., Li, P., Li, H., Liu, J., Que, J., Chang, S., Bao, Y., Shi, J., Weinberger, D. R., Wu, P., & Lu, L. (2020). Neural substrates of smoking and reward cue reactivity in smokers: a meta-analysis of fMRI studies. Transl Psychiatry, 10 (1), 97. https://doi.org/10.1038/s41398-020-0775-0

    LoTemplio, S., Silcox, J., Federmeier, K. D., & Payne, B. R. (2021). Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task. Psychophysiology, 58 (4), e13758. https://doi.org/10.1111/psyp.13758

    Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53 (11), 1611-1626. https://doi.org/10.1111/psyp.12736

    Mager, R., Bullinger, A. H., Brand, S., Schmidlin, M., Schärli, H., Müller-Spahn, F., Störmer, R., & Falkenstein, M. (2007). Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiology of Aging, 28 (12), 1925-1935. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2006.08.001

    Martínez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 11 (1), 102. https://doi.org/10.1038/s41467-019-13668-3

    Martínez, R. M., Chen, C., Fan, Y. T., Wu, H. H., Du, P. S., Chen, G. Y., & Chen, Y. C. (2023). Meta-analysis of electroencephalographic correlates and cognitive erformance for acute exercise-induced modulation. Neuropsychobiology, 82 (3), 131-149. https://doi.org/10.1159/000529307

    Matsuo, J., Ashida, K., Hattori, K., Kunugi, H., Ota, M., Takahashi, T., Teraishi, T., Tonouchi, H., & Yoshida, F. (2016). PT599. Effect of single ketogenic diet containing medium chain triglycerides on cognitive functions in elderly adults. https://doi.org/https://doi.org/10.1093/ijnp/pyw044.599

    McDonald, T. J. W., & Cervenka, M. C. (2018). The expanding role of ketogenic diets in adult neurological disorders. Brain Sciences, 8 (8). https://doi.org/10.3390/brainsci8080148

    McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80 (3), 338-351. https://doi.org/https://doi.org/10.1016/j.bandc.2012.09.001

    McMorris, T., Turner, A., Hale, B. J., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise–cognition interaction: A neurochemical perspective. In Exercise-cognition interaction: Neuroscience perspectives. (pp. 65-103). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00004-9

    McSween, M. P., Coombes, J. S., MacKay, C. P., Rodriguez, A. D., Erickson, K. I., Copland, D. A., & McMahon, K. L. (2019). The immediate effects of acute aerobic exercise on cognition in healthy older adults: A ystematic review. Sports Medicine, 49 (1), 67-82. https://doi.org/10.1007/s40279-018-01039-9

    Medithe, J. W. C., & Nelakuditi, U. R. (2016, 22-23 Jan. 2016). Study of normal and abnormal EEG. 2016 3rd international conference on advanced computing and communication systems (ICACCS),

    Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., & Özyurt, J. (2019). Intensity-dependent ffects of acute exercise on executive eunction. Neural Plasticity, 2019, 8608317. https://doi.org/10.1155/2019/8608317

    Mosconi, L., De Santi, S., Li, J., Tsui, W. H., Li, Y., Boppana, M., Laska, E., Rusinek, H., & de Leon, M. J. (2008). Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiology of Aging, 29 (5), 676-692. https://doi.org/10.1016/j.neurobiolaging.2006.12.008

    Mujica-Parodi, L. R., Amgalan, A., Sultan, S. F., Antal, B., Sun, X., Skiena, S., Lithen, A., Adra, N., Ratai, E.-M., Weistuch, C., Govindarajan, S. T., Strey, H. H., Dill, K. A., Stufflebeam, S. M., Veech, R. L., & Clarke, K. (2020). Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proceedings of the National Academy of Sciences, 117 (11), 6170-6177. https://doi.org/doi:10.1073/pnas.1913042117

    Murphy, J., Geary, H., Millgate, E., Catmur, C., & Bird, G. (2018). Direct and indirect effects of age on interoceptive accuracy and awareness across the adult lifespan. Psychonomic Bulletin & Review, 25 (3), 1193-1202. https://doi.org/10.3758/s13423-017-1339-z

    Mutoh, T., Kunitoki, K., Tatewaki, Y., Yamamoto, S., Thyreau, B., Matsudaira, I., Kawashima, R., & Taki, Y. (2022). Impact of medium-chain triglycerides on gait performance and brain metabolic network in healthy older adults: a double-blind, randomized controlled study. Geroscience, 44(3), 1325-1338. https://doi.org/10.1007/s11357-022-00553-z

    Nóbrega-Sousa, P., Gobbi, L. T. B., Orcioli-Silva, D., Conceição, N. R. D., Beretta, V. S., & Vitório, R. (2020). Prefrontal cortex activity uring alking: Effects of aging and associations with gait and executive function. Neurorehabilitation and Neural Repair, 34 (10), 915-924. https://doi.org/10.1177/1545968320953824

    Newman, J. C., & Verdin, E. (2017). β-Hydroxybutyrate: A signaling metabolite. Annual Review of Nutrition, 37, 51-76. https://doi.org/10.1146/annurev-nutr-071816-064916
    Nunez, P. L., & Srinivasan, R. (2006). References. In Electric Fields of the Brain: The neurophysics of EEG (pp. 0). Oxford University Press.

    O'Neill, B. V., Dodds, C. M., Miller, S. R., Gupta, A., Lawrence, P., Bullman, J., Chen, C., Dewit, O., Kumar, S., Dustagheer, M., Price, J., Shabbir, S., & Nathan, P. J. (2019). The effects of GSK2981710, a medium-chain triglyceride, on cognitive function in healthy older participants: A randomised, placebo-controlled study. Human Psychopharmacology, 34 (3), e2694. https://doi.org/10.1002/hup.2694

    Ota, M., Matsuo, J., Ishida, I., Hattori, K., Teraishi, T., Tonouchi, H., Ashida, K., Takahashi, T., & Kunugi, H. (2016). Effect of a ketogenic meal on cognitive function in elderly adults: potential for cognitive enhancement. Psychopharmacology, 233 (21-22), 3797-3802. https://doi.org/10.1007/s00213-016-4414-7

    Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4 (1), 14-23. https://doi.org/https://doi.org/10.1016/j.jshs.2014.11.001

    Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The physical activity guidelines for americans. The Journal of the American Medical Association, 320 (19), 2020-2028. https://doi.org/10.1001/jama.2018.14854

    Pinckaers, P. J., Churchward-Venne, T. A., Bailey, D., & van Loon, L. J. (2017). Ketone bodies and exercise performance: The ext magic bullet or merely hype? Sports Medicine, 47 (3), 383-391. https://doi.org/10.1007/s40279-016-0577-y

    Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118 (10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019

    Reger, M. A., Henderson, S. T., Hale, C., Cholerton, B., Baker, L. D., Watson, G. S., Hyde, K., Chapman, D., & Craft, S. (2004). Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging, 25 (3), 311-314. https://doi.org/10.1016/s0197-4580(03)00087-3

    Reimann, Z., Miller, J. R., Dahle, K. M., Hooper, A. P., Young, A. M., Goates, M. C., Magnusson, B. M., & Crandall, A. (2020). Executive functions and health behaviors associated with the leading causes of death in the United States: A systematic review. Journal of Health Psychology, 25 (2), 186-196. https://doi.org/10.1177/1359105318800829

    Rietdijk, W. J., Franken, I. H., & Thurik, A. R. (2014). Internal consistency of event-related potentials associated with cognitive control: N2/P3 and ERN/Pe. PLoS One, 9 (7), e102672. https://doi.org/10.1371/journal.pone.0102672

    Roopashree, P. G., Shetty, S. S., & Suchetha Kumari, N. (2021). Effect of medium chain fatty acid in human health and disease. Journal of Functional Foods, 87, 104724. https://doi.org/https://doi.org/10.1016/j.jff.2021.104724

    S ahinoglu, B., & Dogan, G. (2016). Event-related potentials and the stroop effect. The Eurasian Journal of Medicine, 48 (1), 53-57. https://doi.org/10.5152/eurasianjmed.2016.16012

    Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57 (6), 943-954. https://doi.org/10.1194/jlr.R067629

    Schiffer, L., Barnard, L., Baranowski, E. S., Gilligan, L. C., Taylor, A. E., Arlt, W., Shackleton, C. H. L., & Storbeck, K.-H. (2019). Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. The Journal of Steroid Biochemistry and Molecular Biology, 194, 105439. https://doi.org/https://doi.org/10.1016/j.jsbmb.2019.105439

    Shah, N. D. (2017). The use of medium-chain triglycerides in gastrointestinal disorders.
    Shcherbakova, K., Schwarz, A., Apryatin, S., Karpenko, M., & Trofimov, A. (2022). Supplementation of regular diet with medium-chain triglycerides for procognitive effects: A narrative review. Frontiers in Nutrition, 9, 934497. https://doi.org/10.3389/fnut.2022.934497

    Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J., & Ulland, T. K. (2020). β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. Journal of Neuroinflammation, 17(1), 280. https://doi.org/10.1186/s12974-020-01948-5

    Simeone, T. A., Simeone, K. A., & Rho, J. M. (2017). Ketone bodies as anti-seizure agents. Neurochemical Research, 42 (7), 2011-2018. https://doi.org/10.1007/s11064-017-2253-5

    St-Pierre, V., Vandenberghe, C., Lowry, C. M., Fortier, M., Castellano, C. A., Wagner, R., & Cunnane, S. C. (2019). Plasma ketone and medium chain fatty acid response in humans consuming different medium chain triglycerides during a metabolic study day. Frontiers in Nutrition, 6, 46. https://doi.org/10.3389/fnut.2019.00046

    Szucs, D., & Soltész, F. (2010). Event-related brain potentials to violations of arithmetic syntax represented by place value structure. Biological Psychology, 84 (2), 354-367. https://doi.org/10.1016/j.biopsycho.2010.04.002

    Szűcs, D., & Soltész, F. (2012). Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study. BMC Neuroscience, 13 (1), 35. https://doi.org/10.1186/1471-2202-13-35

    Tays, W. J., Dywan, J., & Segalowitz, S. J. (2009). General proactive interference and the N450 response. Neuroscience Letters, 462 (3), 239-243. https://doi.org/https://doi.org/10.1016/j.neulet.2009.07.025

    Tillman, C. M., & Wiens, S. (2011). Behavioral and ERP indices of response conflict in stroop and flanker tasks. Psychophysiology, 48 (10), 1405-1411. https://doi.org/10.1111/j.1469-8986.2011.01203.x

    Tivadar, R. I., & Murray, M. M. (2019). A primer on electroencephalography and event-related potentials for organizational neuroscience. Organizational Research Methods, 22 (1), 69-94. https://doi.org/10.1177/1094428118804657

    Tomassini, A., Hezemans, F. H., Ye, R., Tsvetanov, K. A., Wolpe, N., & Rowe, J. B. (2022). Prefrontal cortical onnectivity mediates locus coeruleus noradrenergic regulation of inhibitory control in older adults. Journal of Neuroscience, 42 (16), 3484-3493. https://doi.org/10.1523/jneurosci.1361-21.2022

    Traul, K. A., Driedger, A., Ingle, D. L., & Nakhasi, D. (2000). Review of the toxicologic properties of medium-chain triglycerides. Food and Chemical Toxicology, 38 (1), 79-98. https://doi.org/10.1016/s0278-6915(99)00106-4
    Tsai, C.-L., Chen, F.-C., Pan, C.-Y., Wang, C.-H., Huang, T.-H., & Chen, T.-C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121-131. https://doi.org/https://doi.org/10.1016/j.psyneuen.2013.12.014

    Vannice, G., & Rasmussen, H. (2014). Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. Journal of the Academy of Nutrition and Dietetics, 114 (1), 136-153. https://doi.org/10.1016/j.jand.2013.11.001
    Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25 (2), 343-355. https://doi.org/10.1037/a0017729

    Villemonteix, T., De Brito, S. A., Kavec, M., Balériaux, D., Metens, T., Slama, H., Baijot, S., Mary, A., Peigneux, P., & Massat, I. (2015). Grey matter volumes in treatment naïve vs. chronically treated children with attention deficit/hyperactivity disorder: a combined approach. European Neuropsychopharmacology, 25 (8), 1118-1127. https://doi.org/https://doi.org/10.1016/j.euroneuro.2015.04.015

    Wallman-Jones, A., Perakakis, P., Tsakiris, M., & Schmidt, M. (2021). Physical activity and interoceptive processing: Theoretical considerations for future research. International Journal of Psychophysiology, 166, 38-49. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2021.05.002

    Wang, J.-H., Guo, L., Wang, S., Yu, N.-W., & Guo, F.-Q. (2022). The potential pharmacological mechanisms of β-hydroxybutyrate for improving cognitive functions. Current Opinion in Pharmacology, 62, 15-22. https://doi.org/https://doi.org/10.1016/j.coph.2021.10.005
    Wheless, J. W. (2008). History of the ketogenic diet. Epilepsia, 49 Suppl 8, 3-5. https://doi.org/10.1111/j.1528-1167.2008.01821.x

    Wronka, E., Kuniecki, M., Kaiser, J., & Coenen, A. M. (2007). The P3 produced by auditory stimuli presented in a passive and active condition: modulation by visual stimuli. Acta Neurobiologiae Experimentalis, 67 (2), 155-164.

    Wu, J., Xiao, W., Yip, J., Peng, L., Zheng, K., Takyi Bentil, O., & Ren, Z. (2022). Effects of exercise on neural changes in inhibitory control: An ALE meta-analysis of fMRI studies. Frontiers in Human Neuroscience 16, 891095. https://doi.org/10.3389/fnhum.2022.891095

    Xu, K., Niu, N., Li, X., Chen, Y., Wang, D., Zhang, J., Chen, Y., Li, H., Wei, D., Chen, K., Cui, R., Zhang, Z., & Yao, L. (2022). The characteristics of glucose metabolism and functional connectivity in posterior default network during nondemented aging: relationship with executive function performance. Cerebral Cortex, 33 (6), 2901-2911.
    https://doi.org/10.1093/cercor/bhac248

    Yang, H., Shan, W., Zhu, F., Wu, J., & Wang, Q. (2019). Ketone bodies in neurological diseases: Focus on ueuroprotection and underlying mechanisms. Frontiers in Neurology, 10, 585. https://doi.org/10.3389/fneur.2019.00585

    Yomogida, Y., Matsuo, J., Ishida, I., Ota, M., Nakamura, K., Ashida, K., & Kunugi, H. (2021). An fMRI Investigation into the effects of ketogenic medium-chain triglycerides on cognitive function in elderly adults: A pilot study. Nutrients, 13 (7). https://doi.org/10.3390/nu13072134

    Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180-192. https://doi.org/10.1016/j.neubiorev.2014.02.005

    Zhao, J., Liang, W.-K., Juan, C.-H., Wang, L., Wang, S., & Zhu, Z. (2015). Dissociated stimulus and response conflict effect in the Stroop task: Evidence from evoked brain potentials and brain oscillations. Biological Psychology, 104, 130-138. https://doi.org/https://doi.org/10.1016/j.biopsycho.2014.12.001

    Zurrón, M., Lindín, M., Galdo-Alvarez, S., & Díaz, F. (2014). Age-related effects on event-related brain potentials in a congruence/incongruence judgment color-word stroop task. Frontiers in Aging Neuroscience, 6, 128. https://doi.org/10.3389/fnagi.2014.00128

    下載圖示
    QR CODE