研究生: |
蔡淑祺 TSAI, Shu-Chi |
---|---|
論文名稱: |
單次有氧健身運動及中鏈脂肪酸補充對中年人抑制控制之影響:事件關聯電位研究 Effect of Acute Aerobic Exercise and MCT Supplement on Inhibition Control in Middle-aged Adults: An Event-Related Potential Study |
指導教授: |
張育愷
Chang, Yu-Kai |
口試委員: |
洪聰敏
HUNG, Tsung-Min 陳宗與 CHEN, Chung-Yu 張育愷 CHANG, Yu-Kai |
口試日期: | 2023/07/31 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 中年人 、單次運動 、酮體 、認知表現 、事件關聯電位 |
英文關鍵詞: | middle-aged, acute exercise, ketone body, cognitive function, event-related potential |
研究方法: | 實驗設計法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301344 |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中年族群為未來老化主要人口,且認知功能也在此時期開始漸漸下降,因此如何改善或預防認知功能退化是需要被關注之議題。一些研究指出,中強度有氧運動對中年人認知功能確實可產生效益,另外,血清中β-羥基丁酸 (βOHB) 對工作記憶可以產生積極的效益,但對於其餘認知領域仍鮮少被討論。因此,本研究目的為探討中鏈脂肪酸補充與單次有氧健身運動對於抑制控制、P3振幅之影響。本研究共招募40位中年族群,依組內平衡設計隨機進行三種情境,有氧健身運動、中鏈脂肪酸補充與影片觀賞。使用二因子混合變異數分析檢測抑制控制任務表現、P3振幅與酮體濃度變化。本研究結果顯示,有氧健身運動情境與控制情境相比,抑制控制有顯著進步,中鏈脂肪酸補充則沒有發現相同效益;P3振幅在三種情境沒有顯著差異,N450則在有氧情境有顯著效益;βOHB在中鏈脂肪酸補充後有顯著提升。整體而言,單次20分鐘中等強度有氧健身運動可以做為中年族群提升抑制控制之運動模式,然而單次20公克中鏈脂肪酸補充不具有同等效益。
The middle-aged is the main population of the future aging, and cognitive function also starts to decline during this period, so how to improve or prevent cognitive degeneration is an important issue. Some studies suggest that moderate-intensity aerobic exercise has benefits in middle-aged adults, and that beta-hydroxybutyric acid (βOHB) has positive benefits on working memory, but rarely been discussed for the remaining cognitive domains. Therefore, the purpose of this study was to investigate the effects of medium-chain fatty acid supplementation and acute aerobic exercise on inhibitory control, P3 amplitude. In this study, 40 middle-aged individuals were recruited and randomized to three session, aerobic exercise (AE), medium-chain fatty acid supplementation (MCT), and movie viewing (CON), in a within group counter balanced design. Inhibitory control, P3 amplitude and βOHB were analyzed separately with 2- way mixed variance analysis. The results of this study showed that AE showed a significant improvement in inhibitory control compared to the CON, while the same benefit was not found in MCT; P3 amplitude no significantly different among the three session, N450 amplitude significantly improved in AE; βOHB showed significantly increases after MCT. Overall, acute 20 mins moderate aerobic exercise can improve inhibitory control, however, single 20 grams MCT supplement does not provide the same benefits.
Abolhassani, N., Leon, J., Sheng, Z., Oka, S., Hamasaki, H., Iwaki, T., & Nakabeppu, Y. (2017). Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mechanisms of Ageing and Development, 161 (Pt A), 95-104. https://doi.org/10.1016/j.mad.2016.05.005
Allan, J. L., McMinn, D., & Daly, M. (2016). A bidirectional relationship between executive function and health behavior: Evidence, implications, and future directions. Frontiers in Neuroscience, 10, 386. https://doi.org/10.3389/fnins.2016.00386
Armstrong, B. C., Ruiz-Blondet, M. V., Khalifian, N., Kurtz, K. J., Jin, Z., & Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing, 166, 59-67. https://doi.org/https://doi.org/10.1016/j.neucom.2015.04.025
Ashton, J. S., Roberts, J. W., Wakefield, C. J., Page, R. M., MacLaren, D. P. M., Marwood, S., & Malone, J. J. (2021). The effects of medium chain triglyceride (MCT) supplementation using a C8:C10 ratio of 30:70 on cognitive performance in healthy young adults. Physiology & Behavior, 229, 113252. https://doi.org/https://doi.org/10.1016/j.physbeh.2020.113252
Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S. J. R., Walker, M. C., & Williams, R. S. B. (2018). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurology, 17 (1), 84-93. https://doi.org/10.1016/s1474-4422(17)30408-8
Avgerinos, K. I., Egan, J. M., Mattson, M. P., & Kapogiannis, D. (2020). Medium chain triglycerides induce mild ketosis and may improve cognition in Alzheimer's disease. A systematic review and meta-analysis of human studies. Ageing Research Reviews, 58, 101001.
https://doi.org/10.1016/j.arr.2019.101001
Berchicci, M., Spinelli, D., & Di Russo, F. (2016). New insight[s into old waves. matching stimulus- and response-locked ERPs on the same time-window. Biological Psychology, 117, 202-215. https://doi.org/https://doi.org/10.1016/j.biopsycho.2016.04.007
Bettcher, B. M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C. L., Stephens, M., Walsh, C. M., & Kramer, J. H. (2016). Neuroanatomical substrates of executive functions: Beyond prefrontal structures. Neuropsychologia, 85, 100-109. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2016.03.001
Boateng, L., Ansong, R., Owusu, W. B., & Steiner-Asiedu, M. (2016). Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana Medical Journal, 50(3), 189-196.
Boere, K., Lloyd, K., Binsted, G., & Krigolson, O. E. (2023). Exercising is good for the brain but exercising outside is potentially better. Scientific Reports, 13 (1), 1140. https://doi.org/10.1038/s41598-022-26093-2
Bogacz, R. (2013). Speed-accuracy trade-off. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 1-4)
https://doi.org/10.1007/978-1-4614-7320-6_319-1
Bugg, J. M., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2007). Age differences in stroop interference: contributions of general slowing and task-specific deficits. Aging, Neuropsychology, and Cognition, 14 (2), 155-167. https://doi.org/10.1080/138255891007065
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., Lambert, E., Leitzmann, M., Milton, K., Ortega, F. B., Ranasinghe, C., Stamatakis, E., Tiedemann, A., Troiano, R. P., van der Ploeg, H. P., Wari, V., & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54 (24), 1451-1462. https://doi.org/10.1136/bjsports-2020-102955
Burdge, G. C., & Calder, P. C. (2015). Introduction to fatty acids and lipids. World Review of Nutrition and Dietetics, 112, 1-16. https://doi.org/10.1159/000365423
Carson, R. P., Herber, D. L., Pan, Z., Phibbs, F., Key, A. P., Gouelle, A., Ergish, P., Armour, E. A., Patel, S., & Duis, J. (2021). Nutritional formulation for patients with angelman syndrome: A randomized, double-blind, placebo-controlled study of exogenous ketones. The Journal of Nutrition, 151 (12), 3628-3636. https://doi.org/10.1093/jn/nxab284
Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences U S A, 97 (4), 1944-1948. https://doi.org/10.1073/pnas.97.4.1944
Chang, Y.-K. (2016). Acute exercise and event-related potential. In (pp. 105-130). https://doi.org/10.1016/B978-0-12-800778-5.00005-0
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54 (2), 289-300. https://doi.org/10.1111/psyp.12784
Chang, Y. K., Chen, F. T., Kuan, G., Wei, G. X., Chu, C. H., Yan, J., Chen, A. G., & Hung, T. M. (2019). Effects of acute exercise duration on the inhibition aspect of executive function in late middle-aged adults. Frontiers in Aging Neuroscience, 11, 227. https://doi.org/10.3389/fnagi.2019.00227
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/https://doi.org/10.1016/j.brainres.2012.02.068
Cools, R., & Arnsten, A. F. T. (2022). Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 47 (1), 309-328. https://doi.org/10.1038/s41386-021-01100-8
Cooper, C. J. (1973). Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics, 16(5), 601-609. https://doi.org/10.1080/00140137308924551
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3 (8), 655-666. https://doi.org/10.1038/nrn894
Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. Handbook of Clinical Neurology, 163, 197-219. https://doi.org/10.1016/b978-0-12-804281-6.00011-2
Cunnane, S., Nugent, S., Roy, M., Courchesne-Loyer, A., Croteau, E., Tremblay, S., Castellano, A., Pifferi, F., Bocti, C., Paquet, N., Begdouri, H., Bentourkia, M., Turcotte, E., Allard, M., Barberger-Gateau, P., Fulop, T., & Rapoport, S. I. (2011). Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition, 27(1), 3-20. https://doi.org/10.1016/j.nut.2010.07.021
Cunnane, S. C., Courchesne-Loyer, A., St-Pierre, V., Vandenberghe, C., Pierotti, T., Fortier, M., Croteau, E., & Castellano, C. A. (2016). Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease. Annals of the New York Academy of Sciences journal, 1367 (1), 12-20. https://doi.org/10.1111/nyas.12999
Cunnane, S. C., Trushina, E., Morland, C., Prigione, A., Casadesus, G., Andrews, Z. B., Beal, M. F., Bergersen, L. H., Brinton, R. D., de la Monte, S., Eckert, A., Harvey, J., Jeggo, R., Jhamandas, J. H., Kann, O., la Cour, C. M., Martin, W. F., Mithieux, G., Moreira, P. I., Murphy, M. P., Nave, K.-A., Nuriel, T., Oliet, S. H. R., Saudou, F., Mattson, M. P., Swerdlow, R. H., & Millan, M. J. (2020). Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 19 (9), 609-633. https://doi.org/10.1038/s41573-020-0072-x
da Silva, F. L. (2022). EEG: Origin and measurement. In C. Mulert & L. Lemieux (Eds.), EEG - fMRI: Physiological Basis, Technique, and Applications (pp. 23-48). https://doi.org/10.1007/978-3-031-07121-8_2
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Diamond, A. (2016). Why improving and assessing executive functions early in life is critical. In Executive function in preschool-age children: Integrating measurement, neurodevelopment, and translational research. (pp. 11-43). American Psychological Association. https://doi.org/10.1037/14797-002
Dienel, G. A. (2019). Brain glucose metabolism: Integration of energetics with function. Physiological Reviews, 99(1), 949-1045. https://doi.org/10.1152/physrev.00062.2017
Dimock, M. (2019). Where millennials end and generation Z begins. https://policycommons.net/artifacts/616979/defining-generations/1597710/
Doebel, S. (2020). Rethinking executive function and its development. Perspectives on Psychological Science, 15 (4), 942-956. https://doi.org/10.1177/1745691620904771
Du, X., Li, J., Li, M., Yang, X., Qi, Z., Xu, B., Liu, W., Xu, Z., & Deng, Y. (2020). Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell & Bioscience, 10 (1), 26. https://doi.org/10.1186/s13578-020-00393-4
Duell, N., Icenogle, G., Silva, K., Chein, J., Steinberg, L., Banich, M. T., Di Guinta, L., Dodge, K. A., Fanti, K. A., Lansford, J. E., Oburu, P., Pastorelli, C., Skinner, A. T., Sorbring, E., Tapanya, S., Uribe Tirado, L. M., Alampay, L. P., Al-Hassan, S. M., Takash, H. M. S., Bacchini, D., Chang, L., & Chaudhary, N. (2018). A cross-sectional examination of response inhibition and working memory on the Stroop task. Cognitive Development, 47, 19-31. https://doi.org/https://doi.org/10.1016/j.cogdev.2018.02.003
Erdogdu, E., Kurt, E., Duru, A. D., Uslu, A., Başar-Eroğlu, C., & Demiralp, T. (2019). Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs). Cognitive Neurodynamics, 13 (6), 503-512. https://doi.org/10.1007/s11571-019-09544-x
Evans, L. W., Stratton, M. S., & Ferguson, B. S. (2020). Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Natural Product Reports, 37 (5), 653-676. https://doi.org/10.1039/c9np00057g
Fellows, R. P., Dahmen, J., Cook, D., & Schmitter-Edgecombe, M. (2017). Multicomponent analysis of a digital trail making test. The Clinical Neuropsychologist, 31(1), 154-167. https://doi.org/10.1080/13854046.2016.1238510
Ferguson, H. J., Brunsdon, V. E. A., & Bradford, E. E. F. (2021). The developmental trajectories of executive function from adolescence to old age. Scientific Reports, 11 (1), 1382. https://doi.org/10.1038/s41598-020-80866-1
Fernandes M. de Sousa, A., Medeiros, A. R., Del Rosso, S., Stults-Kolehmainen, M., & Boullosa, D. A. (2019). The influence of exercise and physical fitness status on attention: A systematic review. International Review of Sport and Exercise Psychology, 12 (1), 202-234. https://doi.org/10.1080/1750984X.2018.1455889
Fisher, G. G., Chacon, M., & Chaffee, D. S. (2019). Chapter 2 - Theories of cognitive aging and work. In B. B. Baltes, C. W. Rudolph, & H. Zacher (Eds.), Work Across the Lifespan (pp. 17-45). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812756-8.00002-5
Fortier, M., Castellano, C. A., Croteau, E., Langlois, F., Bocti, C., St-Pierre, V., Vandenberghe, C., Bernier, M., Roy, M., Descoteaux, M., Whittingstall, K., Lepage, M., Turcotte É, E., Fulop, T., & Cunnane, S. C. (2019). A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimer's and Dementia, 15 (5), 625-634. https://doi.org/10.1016/j.jalz.2018.12.017
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204. https://doi.org/10.1016/j.cortex.2016.04.023
Fujihara, H., Megumi, A., & Yasumura, A. (2021). The acute effect of moderate-intensity exercise on inhibitory control and activation of prefrontal cortex in younger and older adults. Experimental Brain Research, 239 (6), 1765-1778. https://doi.org/10.1007/s00221-021-06086-9
Giannos, P., Prokopidis, K., Lidoriki, I., Triantafyllidis, K. K., Kechagias, K. S., Celoch, K., Candow, D. G., Ostojic, S. M., & Forbes, S. C. (2022). Medium-chain triglycerides may improve memory in non-demented older adults: a systematic review of randomized controlled trials. BMC Geriatrics, 22 (1), 817. https://doi.org/10.1186/s12877-022-03521-6
Gusatovic, J., Gramkow, M. H., Hasselbalch, S. G., & Frederiksen, K. S. (2022). Effects of aerobic exercise on event-related potentials related to cognitive performance: A systematic review. PeerJ, 10, e13604. https://doi.org/10.7717/peerj.13604
Hadar, L., Trope, Y., & Ben-David, B. M. (2021). Aging impairs inhibitory control over incidental cues: A construal-level perspective. Psychological Science, 32 (9), 1442-1451. https://doi.org/10.1177/0956797621998316
Hajcak, G., Klawohn, J., & Meyer, A. (2019). The utility of event-related potentials in clinical psychology. Annual Review of Clinical Psychology, 15, 71-95. https://doi.org/10.1146/annurev-clinpsy-050718-095457
Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28 (2), 587-594. https://doi.org/10.1037/a0032634
Hoyer, S., Oesterreich, K., & Wagner, O. (1988). Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? Journal of Neurology, 235 (3), 143-148. https://doi.org/10.1007/bf00314304
Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. Journal of Clinical Medicine, 7 (11), 391. https://www.mdpi.com/2077-0383/7/11/391
Hu, E., Du, H., Zhu, X., Wang, L., Shang, S., Wu, X., Lu, H., & Lu, X. (2018). Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience, 386, 315-325. https://doi.org/10.1016/j.neuroscience.2018.06.036
Huang, B., & Chen, C. (2020). Stroop N450 reflects both stimulus conflict and response conflict. Neuroreport, 31 (12), 851-856. https://doi.org/10.1097/wnr.0000000000001454
Imbir, K., Spustek, T., Bernatowicz, G., Duda, J., & Żygierewicz, J. (2017). Two aspects of activation: Arousal and subjective significance-behavioral and event-related potential correlates nvestigated by means of a modified emotional stroop task. Frontiers in Human Neuroscience, 11, 608. https://doi.org/10.3389/fnhum.2017.00608
Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience & Biobehavioral Reviews, 128, 258-269. https://doi.org/10.1016/j.neubiorev.2021.06.026
Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences 21 (22). https://doi.org/10.3390/ijms21228767
Ji, Z., Feng, T., Mei, L., Li, A., & Zhang, C. (2019). Influence of acute combined physical and cognitive exercise on cognitive function: an NIRS study. PeerJ, 7, e7418. https://doi.org/10.7717/peerj.7418
Kalanthroff, E., Davelaar, E. J., Henik, A., Goldfarb, L., & Usher, M. (2018). Task conflict and proactive control: A computational theory of the stroop task. Psychological Review, 125 (1), 59-82. https://doi.org/10.1037/rev0000083
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The journals of gerontology. Series B, Psychological sciences and social sciences, 64 (3), 356-363. https://doi.org/10.1093/geronb/gbp030
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology: Series B, 64B (3), 356-363. https://doi.org/10.1093/geronb/gbp030
Kao, S.-C., Chen, F.-T., Moreau, D., Drollette, E., Amireault, S., Chu, C.-h., & Chang, Y.-K. (2022a). Acute effects of exercise engagement on neurocognitive function: A systematic review and meta-analysis on P3 amplitude and latency. International Review of Sport and Exercise Psychology, 1-43. https://doi.org/10.1080/1750984X.2022.2155488
Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020b). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57 (7), e13425. https://doi.org/10.1111/psyp.13425
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28 (4), 155-164. https://doi.org/10.2114/jpa2.28.155
Kawagoe, T., Onoda, K., & Yamaguchi, S. (2017). Associations among executive function, cardiorespiratory fitness, and brain network properties in older adults. Scientific Reports, 7, 40107. https://doi.org/10.1038/srep40107
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., Feusner, J. D., Garfinkel, S. N., Lane, R. D., Mehling, W. E., Meuret, A. E., Nemeroff, C. B., Oppenheimer, S., Petzschner, F. H., Pollatos, O., Rhudy, J. L., Schramm, L. P., Simmons, W. K., Stein, M. B., Stephan, K. E., Van den Bergh, O., Van Diest, I., von Leupoldt, A., & Paulus, M. P. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3 (6), 501-513. https://doi.org/10.1016/j.bpsc.2017.12.004
Kiely, K. M. (2014). Cognitive Function. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life and Well-Being Research (pp. 974-978). Springer Netherlands. https://doi.org/10.1007/978-94-007-0753-5_426
Killikelly, C., & Szűcs, D. (2013). Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence. Cortex, 49 (10), 2888-2903. https://doi.org/10.1016/j.cortex.2013.08.017
Kitabchi, A. E., Umpierrez, G. E., Miles, J. M., & Fisher, J. N. (2009). Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 32 (7), 1335-1343. https://doi.org/10.2337/dc09-9032
Konagai, C., Yanagimoto, K., Hayamizu, K., Han, L., Tsuji, T., & Koga, Y. (2013). Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clinical Interventions in Aging, 8, 1247-1257. https://doi.org/10.2147/cia.S50349
Krigolson, O. E. (2018). Event-related brain potentials and the study of reward processing: Methodological considerations. International Journal of Psychophysiology, 132, 175-183. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2017.11.007
Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging, 33 (2), 425.e419-427. https://doi.org/10.1016/j.neurobiolaging.2010.10.006
Laguë-Beauvais, M., Brunet, J., Gagnon, L., Lesage, F., & Bherer, L. (2013). A fNIRS investigation of switching and inhibition during the modified stroop task in younger and older adults. Neuroimage, 64, 485-495. https://doi.org/10.1016/j.neuroimage.2012.09.042
Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93 (3), 283-297. https://doi.org/10.1016/j.ijpsycho.2014.06.007
Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47 (3), 663-670. https://doi.org/10.1016/j.neuropsychologia.2008.11.013
Lin, T. Y., Liu, H. W., & Hung, T. M. (2021). The ketogenic effect of medium-chain triacylglycerides. Frontiers in Nutrition, 8, 747284. https://doi.org/10.3389/fnut.2021.747284
Lin, X., Deng, J., Shi, L., Wang, Q., Li, P., Li, H., Liu, J., Que, J., Chang, S., Bao, Y., Shi, J., Weinberger, D. R., Wu, P., & Lu, L. (2020). Neural substrates of smoking and reward cue reactivity in smokers: a meta-analysis of fMRI studies. Transl Psychiatry, 10 (1), 97. https://doi.org/10.1038/s41398-020-0775-0
LoTemplio, S., Silcox, J., Federmeier, K. D., & Payne, B. R. (2021). Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task. Psychophysiology, 58 (4), e13758. https://doi.org/10.1111/psyp.13758
Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53 (11), 1611-1626. https://doi.org/10.1111/psyp.12736
Mager, R., Bullinger, A. H., Brand, S., Schmidlin, M., Schärli, H., Müller-Spahn, F., Störmer, R., & Falkenstein, M. (2007). Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiology of Aging, 28 (12), 1925-1935. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2006.08.001
Martínez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 11 (1), 102. https://doi.org/10.1038/s41467-019-13668-3
Martínez, R. M., Chen, C., Fan, Y. T., Wu, H. H., Du, P. S., Chen, G. Y., & Chen, Y. C. (2023). Meta-analysis of electroencephalographic correlates and cognitive erformance for acute exercise-induced modulation. Neuropsychobiology, 82 (3), 131-149. https://doi.org/10.1159/000529307
Matsuo, J., Ashida, K., Hattori, K., Kunugi, H., Ota, M., Takahashi, T., Teraishi, T., Tonouchi, H., & Yoshida, F. (2016). PT599. Effect of single ketogenic diet containing medium chain triglycerides on cognitive functions in elderly adults. https://doi.org/https://doi.org/10.1093/ijnp/pyw044.599
McDonald, T. J. W., & Cervenka, M. C. (2018). The expanding role of ketogenic diets in adult neurological disorders. Brain Sciences, 8 (8). https://doi.org/10.3390/brainsci8080148
McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80 (3), 338-351. https://doi.org/https://doi.org/10.1016/j.bandc.2012.09.001
McMorris, T., Turner, A., Hale, B. J., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise–cognition interaction: A neurochemical perspective. In Exercise-cognition interaction: Neuroscience perspectives. (pp. 65-103). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00004-9
McSween, M. P., Coombes, J. S., MacKay, C. P., Rodriguez, A. D., Erickson, K. I., Copland, D. A., & McMahon, K. L. (2019). The immediate effects of acute aerobic exercise on cognition in healthy older adults: A ystematic review. Sports Medicine, 49 (1), 67-82. https://doi.org/10.1007/s40279-018-01039-9
Medithe, J. W. C., & Nelakuditi, U. R. (2016, 22-23 Jan. 2016). Study of normal and abnormal EEG. 2016 3rd international conference on advanced computing and communication systems (ICACCS),
Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., & Özyurt, J. (2019). Intensity-dependent ffects of acute exercise on executive eunction. Neural Plasticity, 2019, 8608317. https://doi.org/10.1155/2019/8608317
Mosconi, L., De Santi, S., Li, J., Tsui, W. H., Li, Y., Boppana, M., Laska, E., Rusinek, H., & de Leon, M. J. (2008). Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiology of Aging, 29 (5), 676-692. https://doi.org/10.1016/j.neurobiolaging.2006.12.008
Mujica-Parodi, L. R., Amgalan, A., Sultan, S. F., Antal, B., Sun, X., Skiena, S., Lithen, A., Adra, N., Ratai, E.-M., Weistuch, C., Govindarajan, S. T., Strey, H. H., Dill, K. A., Stufflebeam, S. M., Veech, R. L., & Clarke, K. (2020). Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proceedings of the National Academy of Sciences, 117 (11), 6170-6177. https://doi.org/doi:10.1073/pnas.1913042117
Murphy, J., Geary, H., Millgate, E., Catmur, C., & Bird, G. (2018). Direct and indirect effects of age on interoceptive accuracy and awareness across the adult lifespan. Psychonomic Bulletin & Review, 25 (3), 1193-1202. https://doi.org/10.3758/s13423-017-1339-z
Mutoh, T., Kunitoki, K., Tatewaki, Y., Yamamoto, S., Thyreau, B., Matsudaira, I., Kawashima, R., & Taki, Y. (2022). Impact of medium-chain triglycerides on gait performance and brain metabolic network in healthy older adults: a double-blind, randomized controlled study. Geroscience, 44(3), 1325-1338. https://doi.org/10.1007/s11357-022-00553-z
Nóbrega-Sousa, P., Gobbi, L. T. B., Orcioli-Silva, D., Conceição, N. R. D., Beretta, V. S., & Vitório, R. (2020). Prefrontal cortex activity uring alking: Effects of aging and associations with gait and executive function. Neurorehabilitation and Neural Repair, 34 (10), 915-924. https://doi.org/10.1177/1545968320953824
Newman, J. C., & Verdin, E. (2017). β-Hydroxybutyrate: A signaling metabolite. Annual Review of Nutrition, 37, 51-76. https://doi.org/10.1146/annurev-nutr-071816-064916
Nunez, P. L., & Srinivasan, R. (2006). References. In Electric Fields of the Brain: The neurophysics of EEG (pp. 0). Oxford University Press.
O'Neill, B. V., Dodds, C. M., Miller, S. R., Gupta, A., Lawrence, P., Bullman, J., Chen, C., Dewit, O., Kumar, S., Dustagheer, M., Price, J., Shabbir, S., & Nathan, P. J. (2019). The effects of GSK2981710, a medium-chain triglyceride, on cognitive function in healthy older participants: A randomised, placebo-controlled study. Human Psychopharmacology, 34 (3), e2694. https://doi.org/10.1002/hup.2694
Ota, M., Matsuo, J., Ishida, I., Hattori, K., Teraishi, T., Tonouchi, H., Ashida, K., Takahashi, T., & Kunugi, H. (2016). Effect of a ketogenic meal on cognitive function in elderly adults: potential for cognitive enhancement. Psychopharmacology, 233 (21-22), 3797-3802. https://doi.org/10.1007/s00213-016-4414-7
Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4 (1), 14-23. https://doi.org/https://doi.org/10.1016/j.jshs.2014.11.001
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The physical activity guidelines for americans. The Journal of the American Medical Association, 320 (19), 2020-2028. https://doi.org/10.1001/jama.2018.14854
Pinckaers, P. J., Churchward-Venne, T. A., Bailey, D., & van Loon, L. J. (2017). Ketone bodies and exercise performance: The ext magic bullet or merely hype? Sports Medicine, 47 (3), 383-391. https://doi.org/10.1007/s40279-016-0577-y
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118 (10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
Reger, M. A., Henderson, S. T., Hale, C., Cholerton, B., Baker, L. D., Watson, G. S., Hyde, K., Chapman, D., & Craft, S. (2004). Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging, 25 (3), 311-314. https://doi.org/10.1016/s0197-4580(03)00087-3
Reimann, Z., Miller, J. R., Dahle, K. M., Hooper, A. P., Young, A. M., Goates, M. C., Magnusson, B. M., & Crandall, A. (2020). Executive functions and health behaviors associated with the leading causes of death in the United States: A systematic review. Journal of Health Psychology, 25 (2), 186-196. https://doi.org/10.1177/1359105318800829
Rietdijk, W. J., Franken, I. H., & Thurik, A. R. (2014). Internal consistency of event-related potentials associated with cognitive control: N2/P3 and ERN/Pe. PLoS One, 9 (7), e102672. https://doi.org/10.1371/journal.pone.0102672
Roopashree, P. G., Shetty, S. S., & Suchetha Kumari, N. (2021). Effect of medium chain fatty acid in human health and disease. Journal of Functional Foods, 87, 104724. https://doi.org/https://doi.org/10.1016/j.jff.2021.104724
S ahinoglu, B., & Dogan, G. (2016). Event-related potentials and the stroop effect. The Eurasian Journal of Medicine, 48 (1), 53-57. https://doi.org/10.5152/eurasianjmed.2016.16012
Schönfeld, P., & Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57 (6), 943-954. https://doi.org/10.1194/jlr.R067629
Schiffer, L., Barnard, L., Baranowski, E. S., Gilligan, L. C., Taylor, A. E., Arlt, W., Shackleton, C. H. L., & Storbeck, K.-H. (2019). Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. The Journal of Steroid Biochemistry and Molecular Biology, 194, 105439. https://doi.org/https://doi.org/10.1016/j.jsbmb.2019.105439
Shah, N. D. (2017). The use of medium-chain triglycerides in gastrointestinal disorders.
Shcherbakova, K., Schwarz, A., Apryatin, S., Karpenko, M., & Trofimov, A. (2022). Supplementation of regular diet with medium-chain triglycerides for procognitive effects: A narrative review. Frontiers in Nutrition, 9, 934497. https://doi.org/10.3389/fnut.2022.934497
Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J., & Ulland, T. K. (2020). β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. Journal of Neuroinflammation, 17(1), 280. https://doi.org/10.1186/s12974-020-01948-5
Simeone, T. A., Simeone, K. A., & Rho, J. M. (2017). Ketone bodies as anti-seizure agents. Neurochemical Research, 42 (7), 2011-2018. https://doi.org/10.1007/s11064-017-2253-5
St-Pierre, V., Vandenberghe, C., Lowry, C. M., Fortier, M., Castellano, C. A., Wagner, R., & Cunnane, S. C. (2019). Plasma ketone and medium chain fatty acid response in humans consuming different medium chain triglycerides during a metabolic study day. Frontiers in Nutrition, 6, 46. https://doi.org/10.3389/fnut.2019.00046
Szucs, D., & Soltész, F. (2010). Event-related brain potentials to violations of arithmetic syntax represented by place value structure. Biological Psychology, 84 (2), 354-367. https://doi.org/10.1016/j.biopsycho.2010.04.002
Szűcs, D., & Soltész, F. (2012). Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study. BMC Neuroscience, 13 (1), 35. https://doi.org/10.1186/1471-2202-13-35
Tays, W. J., Dywan, J., & Segalowitz, S. J. (2009). General proactive interference and the N450 response. Neuroscience Letters, 462 (3), 239-243. https://doi.org/https://doi.org/10.1016/j.neulet.2009.07.025
Tillman, C. M., & Wiens, S. (2011). Behavioral and ERP indices of response conflict in stroop and flanker tasks. Psychophysiology, 48 (10), 1405-1411. https://doi.org/10.1111/j.1469-8986.2011.01203.x
Tivadar, R. I., & Murray, M. M. (2019). A primer on electroencephalography and event-related potentials for organizational neuroscience. Organizational Research Methods, 22 (1), 69-94. https://doi.org/10.1177/1094428118804657
Tomassini, A., Hezemans, F. H., Ye, R., Tsvetanov, K. A., Wolpe, N., & Rowe, J. B. (2022). Prefrontal cortical onnectivity mediates locus coeruleus noradrenergic regulation of inhibitory control in older adults. Journal of Neuroscience, 42 (16), 3484-3493. https://doi.org/10.1523/jneurosci.1361-21.2022
Traul, K. A., Driedger, A., Ingle, D. L., & Nakhasi, D. (2000). Review of the toxicologic properties of medium-chain triglycerides. Food and Chemical Toxicology, 38 (1), 79-98. https://doi.org/10.1016/s0278-6915(99)00106-4
Tsai, C.-L., Chen, F.-C., Pan, C.-Y., Wang, C.-H., Huang, T.-H., & Chen, T.-C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121-131. https://doi.org/https://doi.org/10.1016/j.psyneuen.2013.12.014
Vannice, G., & Rasmussen, H. (2014). Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. Journal of the Academy of Nutrition and Dietetics, 114 (1), 136-153. https://doi.org/10.1016/j.jand.2013.11.001
Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25 (2), 343-355. https://doi.org/10.1037/a0017729
Villemonteix, T., De Brito, S. A., Kavec, M., Balériaux, D., Metens, T., Slama, H., Baijot, S., Mary, A., Peigneux, P., & Massat, I. (2015). Grey matter volumes in treatment naïve vs. chronically treated children with attention deficit/hyperactivity disorder: a combined approach. European Neuropsychopharmacology, 25 (8), 1118-1127. https://doi.org/https://doi.org/10.1016/j.euroneuro.2015.04.015
Wallman-Jones, A., Perakakis, P., Tsakiris, M., & Schmidt, M. (2021). Physical activity and interoceptive processing: Theoretical considerations for future research. International Journal of Psychophysiology, 166, 38-49. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2021.05.002
Wang, J.-H., Guo, L., Wang, S., Yu, N.-W., & Guo, F.-Q. (2022). The potential pharmacological mechanisms of β-hydroxybutyrate for improving cognitive functions. Current Opinion in Pharmacology, 62, 15-22. https://doi.org/https://doi.org/10.1016/j.coph.2021.10.005
Wheless, J. W. (2008). History of the ketogenic diet. Epilepsia, 49 Suppl 8, 3-5. https://doi.org/10.1111/j.1528-1167.2008.01821.x
Wronka, E., Kuniecki, M., Kaiser, J., & Coenen, A. M. (2007). The P3 produced by auditory stimuli presented in a passive and active condition: modulation by visual stimuli. Acta Neurobiologiae Experimentalis, 67 (2), 155-164.
Wu, J., Xiao, W., Yip, J., Peng, L., Zheng, K., Takyi Bentil, O., & Ren, Z. (2022). Effects of exercise on neural changes in inhibitory control: An ALE meta-analysis of fMRI studies. Frontiers in Human Neuroscience 16, 891095. https://doi.org/10.3389/fnhum.2022.891095
Xu, K., Niu, N., Li, X., Chen, Y., Wang, D., Zhang, J., Chen, Y., Li, H., Wei, D., Chen, K., Cui, R., Zhang, Z., & Yao, L. (2022). The characteristics of glucose metabolism and functional connectivity in posterior default network during nondemented aging: relationship with executive function performance. Cerebral Cortex, 33 (6), 2901-2911.
https://doi.org/10.1093/cercor/bhac248
Yang, H., Shan, W., Zhu, F., Wu, J., & Wang, Q. (2019). Ketone bodies in neurological diseases: Focus on ueuroprotection and underlying mechanisms. Frontiers in Neurology, 10, 585. https://doi.org/10.3389/fneur.2019.00585
Yomogida, Y., Matsuo, J., Ishida, I., Ota, M., Nakamura, K., Ashida, K., & Kunugi, H. (2021). An fMRI Investigation into the effects of ketogenic medium-chain triglycerides on cognitive function in elderly adults: A pilot study. Nutrients, 13 (7). https://doi.org/10.3390/nu13072134
Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180-192. https://doi.org/10.1016/j.neubiorev.2014.02.005
Zhao, J., Liang, W.-K., Juan, C.-H., Wang, L., Wang, S., & Zhu, Z. (2015). Dissociated stimulus and response conflict effect in the Stroop task: Evidence from evoked brain potentials and brain oscillations. Biological Psychology, 104, 130-138. https://doi.org/https://doi.org/10.1016/j.biopsycho.2014.12.001
Zurrón, M., Lindín, M., Galdo-Alvarez, S., & Díaz, F. (2014). Age-related effects on event-related brain potentials in a congruence/incongruence judgment color-word stroop task. Frontiers in Aging Neuroscience, 6, 128. https://doi.org/10.3389/fnagi.2014.00128