簡易檢索 / 詳目顯示

研究生: 吳佳諭
Wu, Jia-Yu
論文名稱: 以單分子光譜研究B細胞淋巴癌致癌基因G-四股結構分子之結構動態學
Structural Dynamics Study of B-cell Lymphoma Oncogene G-quadruplex Molecules Using Single-Molecule Spectroscopy
指導教授: 李以仁
Lee, I-Ren
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 人類B細胞淋巴癌基因G-四股結構全內反射式螢光顯微鏡單分子螢光共振能量轉移
英文關鍵詞: B-cell Lymphoma 2, G-quadruplex, total internal reflection fluorescence microscope, single molecule fluorescence resonance energy transfer
DOI URL: https://doi.org/10.6345/NTNU202204471
論文種類: 學術論文
相關次數: 點閱:109下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類B細胞淋巴癌基因(B-cell Lymphoma 2,BCL2)是一致癌基因,基因的過表達已被顯示出跟多數癌症息息相關,而在此基因啟動子區域所形成的G-四股結構已被研究顯示出可以抑制啟動子的活性,調節癌基因的轉錄,進而抑制癌蛋白的形成。先前,已有使用圓二色光譜及核磁共振光譜檢測出BCL2基因可以形成至少三種以上的G-四股結構構形。在此,我們使用全內反射式螢光顯微光譜結合單分子螢光共振能量轉移技術來探討BCL2序列在不同鹽類濃度條件下所形成的G-四股結構構形以及其含量變化。本實驗主要研究的目標為完整的BCL2序列(39個鹼基對)以及其縮短版序列(27個鹼基對)(Full length BCL2和BCL2MidG4),由實驗結果觀察到當低鉀離子濃度時,縮短版序列的G-四股結構構形有快速變動的現象,隨著鉀離子濃度提升,漸漸趨向於一穩定的構形。完整的BCL2序列觀察到其構形之間除了有快速變動的現象之外,還觀察到相對較慢的不同構型間的相互轉換,這些狀態之間的轉換不需要經過打開的構形,與文獻報導的人類端粒酶序列的G-四股結構構形之間的轉換不同,且觀察到有循序折疊的現象。而當溶液中鉀離子濃度提升,其構形也出現停留在某一特定狀態的現象。由於穩定G-四股結構的構形對於致癌基因的表達調節有相當的重要性,近年來已有相關研究發展可穩定G-四股結構的小分子藥物,然而這些小分子藥物對於G-四股結構可能有選擇性的結合,因此了解G-四股結構的多樣性以及其之間的轉換有助於藥物的發展及合成。

    B-cell lymphoma 2 (Bcl-2) is an oncoprotein that involves in the regulation of programmed cell death or apoptosis. The overexpression of BCL2 gene has been observed in a wide range of human cancers. It has been reported that the P1 promoter of BCL2 gene contains a 39-nucleotide(nt) GC-rich region which can form multiple G-quadruplex structures that inhibit gene transcription, and the most stable one is formed by internal four G-tracts. Previous studies have shown that this 39nt GC-rich region might fold into at least three different G-quadruplex conformations. Here, we apply single molecule fluorescence resonance energy transfer (smFRET) spectroscopy using total internal reflection fluorescence (TIRF) microscope to investigate the G-quadruplex conformations in the BCL2 gene promoter and further analyze the structural dynamics of these conformational transitions. We found that the conformations formed in the BCL2MidG4 sequence at low potassium concentration interconverts quickly, while at high salt concentration, it tends to maintain at a high FRET steady state. For Full length BCL2 sequence, the fast conformational interconversion is also observed. Besides the fast change, BCL2 G-quadruplex undergoes a relatively slow interconversion between conformational states. Unlike the conformational transitions of human telomere G-quadruplex, this interconversion does not go through an open conformation, suggesting a direct conformational transition. In addition, a sequential folding is observed. At higher potassium concentration, similar to the BCL2MidG4 sequence case, majority of the molecules remain in a steady state. Because the stability of G-quadruplex is highly correlated to oncogene transcription, great efforts have been made to develop small molecule drugs of binding and stabilizing the G-quadruplex. Understanding the interchange of the conformations and the structural dynamics further provides valuable information on the development of small molecule drugs.

    摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 ix 誌謝 x 第一章 緒論 1 1.1 B細胞淋巴瘤基因2(B-cell Lymphoma 2) 1 1.2 G-四股結構(G-quadruplex) 3 1.2.1 G-四股結構的形成 3 1.2.2 G-四股結構的多樣性 5 1.2.3 G-四股結構特性及穩定 7 1.3 BCL2的四股結構 9 1.4 研究動機 12 第二章 實驗方法與儀器 13 2.1 單分子螢光共振能量轉移 13 2.1.1 原理 13 2.1.2 發生條件 15 2.1.3 優點與應用 16 2.2 全內反射式螢光顯微鏡 18 2.2.1 儀器原理 18 2.2.2 儀器架設 19 2.2.3 應用 20 2.3 反應玻片的製備 21 2.3.1 玻片表面清洗與修飾 21 2.3.2 反應腔室製作 22 2.4 核酸分子設計 22 2.4.1 染料標記核酸分子 23 2.4.2 核酸分子黏合(anneal)反應流程 23 2.5 除氧系統(Oxygen Scavenging System) 23 2.6 實驗流程 25 2.6.1 表面束縛分子 25 2.6.2 除氧系統溶液配置(Gloxy) 26 2.6.3 緩衝溶液條件 26 2.7 數據處理與分析 28 第三章 實驗結果與討論 33 3.1 BCL2MidG4和Full length BCL2隨鹽類濃度變化的EFRET直方圖 33 3.2 BCL2MidG4序列時間軌跡圖(time trace)(Figure A1) 36 3.3 Full length BCL2序列時間軌跡圖(time trace)(Figure A2) 38 第四章 結論 42 參考文獻 44 附錄 51

    [1] D. T. Chao and S. J. Korsmeyer, “BCL-2 FAMILY: Regulators of Cell Death,” Annu. Rev. Immunol, 1998, 395–419.
    [2] J. M. Adams and S. Cory, “The Bcl-2 Protein Family: Arbiters of Cell Survival.,” Science (New York, N.Y.) 281, no. 5381 (1998): 1322–26.
    [3] Katja C. Zimmermann, Christine Bonzon, and Douglas R. Green, “The Machinery of Programmed Cell Death,” Pharmacology & Therapeutics 92, no. 1 (2001): 57–70
    [4] Alex R. D. Delbridge et al., “Thirty Years of BCL-2: Translating Cell Death Discoveries into Novel Cancer Therapies.,” Nature Reviews. Cancer 16, no. 2 (2016): 99–109
    [5] J J Yunis, “The Chromosomal Basis of Human Neoplasia.,” Science (New York, N.Y.) 221 (1983): 227–36.
    [6] Akagi, T. ; Kondo, E and Yoshino, T. “Expression of Bcl-2 Protein and Bcl-2 mRNA in Normal and Neoplastic Lymphoid Tissues,” Leukemia & Lymphoma 13, no. 1–2 (1994): 81–87
    [7] H Joensuu, L Pylkkänen, and S Toikkanen, “Bcl-2 Protein Expression and Long-Term Survival in Breast Cancer.,” The American Journal of Pathology 145, no. 5 (1994): 1191–98.
    [8] Timothy J. McDonnell et al., “Expression of the Protooncogene Bcl-2 in the Prostate and Its Association with Emergence of Androgen-Independent Prostate Cancer,” Cancer Research 52, no. 24 (1992): 6940–44
    [9] F Pezzella et al., “Bcl-2 Protein in Non-Small-Cell Lung Carcinoma.,” The New England Journal of Medicine 329, no. 10 (1993): 690–94
    [10] W. Tjalma et al., “Expression of Bcl-2 in Invasive and in Situ Carcinoma of the Uterine Cervix,” American Journal of Obstetrics and Gynecology 178, no. 1 I (1998): 113–17
    [11] Gustavo Bruno Baretton et al., “Apoptosis and Lmmunohistochemical Bcl-2 Expression in Colorectal Adenomas and Carcinomas,” American Cancer Society, 1996, 255–64.
    [12] T Miyashita and J C Reed, “Bcl-2 Oncoprotein Blocks Chemotherapy-Induced Apoptosis in a Human Leukemia Cell Line.,” Blood 81, no. 1 (1993): 151–57.
    [13] By Rakesh K Srivastava et al., “Bcl-2 – Mediated Drug Resistance : Inhibition of Apoptosis by Blocking Nuclear Factor of Activated T Lymphocytes” 190, no. 2 (1999).
    [14] B. Weyhenmeyer et al., “Targeting the Anti-Apoptotic Bcl-2 Family Members for the Treatment of Cancer,” Experimental Oncology 34, no. 3 (2012): 192–99.
    [15] M A Yenari et al., “Gene Therapy and Hypothermia for Stroke Treatment,” Neuroprotective Agents 993 (2003): 54–68
    [16] G Middleton, G Nunez, and a M Davies, “Bax Promotes Neuronal Survival and Antagonises the Survival Effects of Neurotrophic Factors.,” Development (Cambridge, England) 122, no. 2 (1996): 695–701
    [17] M Seto et al., “Alternative Promoters and Exons, Somatic Mutation and Deregulation of the Bcl-2-Ig Fusion Gene in Lymphoma.,” The EMBO Journal 7, no. 1 (1988): 123–31
    [18] R L Young and S J Korsmeyer, “A Negative Regulatory Element in the Bcl-2 5’-untranslated Region Inhibits Expression from an Upstream Promoter.,” Molecular and Cellular Biology 13, no. 6 (1993): 3686–97.
    [19] Caroline Heckman et al., “The WT1 Protein Is a Negative Regulator of the Normal Bcl-2 Allele in t(14;18) Lymphomas,” Journal of Biological Chemistry 272, no. 31 (1997): 19609–14.
    [20] Candelaria Gomez-manzano et al., “Transfer of E2F-1 to Human Glioma Cells Results in Transcriptional Up-Regulation of Bcl-2 Advances in Brief Transfer of E2F-1 to Human Glioma Cells Results in Transcriptional,” no. 713 (2001): 6693–97.
    [21] Yu-zhen Liu, Linda M Boxer, and David S Latchman, “Activation of the Bcl-2 Promoter by Nerve Growth Factor Is Mediated by the p42 / p44 MAPK Cascade,” Cell 27, no. 10 (1999).
    [22] Thomas S. Dexheimer, Daekyu Sun, and Laurence H. Hurley, “Deconvoluting the Structural and Drug-Recognition Complexity of the G-Quadruplex-Forming Region Upstream of the Bcl-2 P1 Promoter,” Journal of the American Chemical Society 128, no. 16 (2006): 5404–15
    [23] Martin Gellert, Marie N. Lipsett, and David R. Davies, “Helix Formation By Guanylic Acid,” Proceedings of the National Academy of Sciences 48, no. 12 (1962): 2013–18
    [24] Nancy H. Campbell and Stephen Neidle, “G-Quadruplexes and Metal Ions.,” Metal Ions in Life Sciences, 2012
    [25] Jens Müller, “Functional Metal Ions in Nucleic Acids.,” Metallomics : Integrated Biometal Science 2, no. 5 (2010): 318–27
    [26] Andrew N. Lane et al., “Stability and Kinetics of G-Quadruplex Structures.,” Nucleic Acids Research 36, no. 17 (2008): 5482–5515
    [27] Yuwei Chen and Danzhou Yang, “Sequence, Stability, and Structure of G-Quadruplexes and Their Interactions with Drugs,” Current Protocols in Nucleic Acid Chemistry, no. SUPLL.50 (2012): 1–17
    [28] Ivan Smirnov and Richard H. Shafer, “Effect of Loop Sequence and Size on DNA Aptamer Stability,” Biochemistry 39, no. 6 (2000): 1462–68
    [29] Pascale Hazel et al., “Loop-Length-Dependent Folding of G-Quadruplexes,” Journal of the American Chemical Society 126, no. 50 (2004): 16405–15
    [30] Dinshaw J. Patel, Anh Tuan Phan, and Vitaly Kuryavyi, “Human Telomere, Oncogenic Promoter and 5’-UTR G-Quadruplexes: Diverse Higher Order DNA and RNA Targets for Cancer Therapeutics,” Nucleic Acids Research 35, no. 22 (2007): 7429–55.
    [31] Attila Ambrus et al., “Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel/antiparallel Strands in Potassium Solution,” Nucleic Acids Research 34, no. 9 (2006): 2723–35
    [32] Eric Henderson et al., “Telomeric DNA Oligonucleotides Form Novel Intramolecular Structures Containing Guanine-Guanine Base Pairs,” Cell 51, no. 6 (1987): 899–908.
    [33] D. Sun et al., “Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound,” Journal of Medicinal Chemistry, 1997
    [34] Tomas Simonsson, Petr Pecinka, and Mikael Kubista, “DNA Tetraplex Formation in the Control Region of c-Myc,” Nucleic Acids Research 26, no. 5 (1998): 1167–72
    [35] Daekyu Sun et al., “Facilitation of a Structural Transition in the Polypurine/polypyrimidine Tract within the Proximal Promoter Region of the Human VEGF Gene by the Presence of Potassium and G-Quadruplex-Interactive Agents,” Nucleic Acids Research 33, no. 18 (2005): 6070–80
    [36] Richard De Armond et al., “Evidence for the Presence of a Guanine Quadruplex Forming Region within a Polypurine Tract of the Hypoxia Inducible Factor 1 Alpha Promoter,” Biochemistry 44, no. 49 (2005): 16341–50
    [37] Kexiao Guo et al., “Formation of Pseudosymmetrical G-Quadruplex and I-Motif Structures in the Proximal Promoter Region of the RET Oncogene,” Journal of the American Chemical Society 129, no. 33 (2007): 10220–28
    [38] Sarah Rankin et al., “Putative DNA Quadruplex Formation within the Human c-Kit Oncogene,” Journal of the American Chemical Society 127, no. 30 (2005): 10584–89
    [39] Dik-Lung Ma, Victor Pui-Yan Ma, Ka-Ho Leung, Hai-Jing Zhong, Hong-Zhang He, Daniel Shiu-Hin Chan and Chung-Hang Leung (2013). Structure-Based Approaches Targeting Oncogene Promoter G-Quadruplexes, Oncogene and Cancer - From Bench to Clinic, Dr. Yahwardiah Siregar (Ed.), InTech
    [40] Dipankar Sen and Walter Gilbert, “Formation of Parallel Four-Stranded Complexes by Guanine-Rich Motifs in DNA and Its Implications for Meiosis.,” Nature 334, no. 6180 (1988): 364–66
    [41] Denis Drygin et al., “Anticancer Activity of CX-3543: A Direct Inhibitor of rRNA Biogenesis,” Cancer Research 69, no. 19 (2009): 7653–61
    [42] Rumen Kostadinov et al., “GRSDB: A Database of Quadruplex Forming G-Rich Sequences in Alternatively Processed Mammalian Pre-mRNA Sequences.,” Nucleic Acids Research 34, no. Database issue (2006): D119–124
    [43] Laurence H Hurley et al., “G-Quadruplexes as Targets for Drug Design,” Pharmacology & Therapeutics 85, no. June 2016 (2000): 141–58
    [44] Guangtao Song and Jinsong Ren, “Recognition and Regulation of Unique Nucleic Acid Structures by Small Molecules.,” Chemical Communications (Cambridge, England) 46, no. 39 (2010): 7283–94
    [45] Anh Tuân Phan, Yasha S. Modi, and Dinshaw J. Patel, “Propeller-Type Parallel-Stranded G-Quadruplexes in the Human c-Myc Promoter,” Journal of the American Chemical Society 126, no. 28 (2004): 8710–16
    [46] Jixun Dai et al., “An Intramolecular G-Quadruplex Structure with Mixed Parallel/antiparallel G-Strands Formed in the Human BCL-2 Promoter Region in Solution,” Journal of the American Chemical Society 128, no. 4 (2006): 1096–98
    [47] Jixun Dai et al., “NMR Solution Structure of the Major G-Quadruplex Structure Formed in the Human BCL2 Promoter Region,” Nucleic Acids Research 34, no. 18 (2006): 5133–44
    [48] Prashansa Agrawal et al., “The Major G-Quadruplex Formed in the Human BCL-2 Proximal Promoter Adopts a Parallel Structure with a 13-Nt Loop in K+ Solution,” Journal of the American Chemical Society 136, no. 5 (2014): 1750–53
    [49] T Ha et al., “Probing the Interaction between Two Single Molecules: Fluorescence Resonance Energy Transfer between a Single Donor and a Single Acceptor.,” Proceedings of the National Academy of Sciences 93, no. 13 (1996): 6264–68
    [50] T Ha, “Single-Molecule Fluorescence Resonance Energy Transfer,” Methods (Duluth) 25, no. 1 (2001): 78–86
    [51] 李以仁、許顥頤、秦志皞、吳佳諭,「單分子螢光共振能量轉移光譜簡介」。化學,73卷4期,303-312
    [52] Paul R. Selvin and Taekjip Ha, Single-Molecule Techniques: A Laboratory Manual, CSHL Press, 2008
    [53] Daniel Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2, no. 11 (2001): 764–74
    [54] Colin Echeverría Aitken, R Andrew Marshall, and Joseph D Puglisi, “An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments.,” Biophysical Journal 94, no. 5 (2008): 1826–35
    [55] Sean A McKinney, Chirlmin Joo, and Taekjip Ha, “Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling.,” Biophysical Journal 91, no. 5 (2006): 1941–51, doi:10.1529/biophysj.106.082487.

    下載圖示
    QR CODE