研究生: |
劉仕渝 Liu, Shi-Yu |
---|---|
論文名稱: |
稀土鐵石榴石與鈣鈦礦奈米材料之結構、磁性和應用 Rare-earth iron garnet and perovskite nanomaterials: Structure, magnetism, and applications |
指導教授: |
駱芳鈺
Lo, Fang-Yuh 林文欽 Lin, Wen-Chin |
口試委員: |
李亞儒
Lee, Ya-Ju 陳詩芸 Chen, Shih-Yun 趙宇強 Chao, Yu-Chiang 林文欽 Lin, Wen-Chin 駱芳鈺 Lo, Fang-Yuh |
口試日期: | 2023/07/04 |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 亞鐵磁 、反鐵磁 、稀土石榴石 、氧化鋁 、石墨烯 、鈣鈦礦 、量子點 、異質結構 、磁異向性 、交換偏置 、雷射照射 、脈衝雷射沉積 |
英文關鍵詞: | ferrimagnetic, antiferromagnetic, rare-earth iron garnet, AlOx, graphene, perovskite, quantum dots, heterostructure, magnetic anisotropy, exchange bias, laser illumination, pulsed laser deposition |
研究方法: | 實驗設計法 、 調查研究 、 比較研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202301467 |
論文種類: | 學術論文 |
相關次數: | 點閱:234 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦和稀土石榴(REIG)薄膜具有優異的光學和磁光特性。因此,將這兩種材料結合在一起可以創造出具有可調控光學和磁性性能的異質結構,並應用於光學通信、光學記憶和磁光元件等領域。在本研究中,我們將深入探討鈣鈦礦和REIG薄膜各自的潛在價值。
近年來,一些研究表明使用稀土元素(RE)元素代替釔(Y)來調節石榴石薄膜的應變誘導磁異向性。REIG薄膜(~100 nm)藉由脈衝雷射沉積法製備於(111)取向的釔鋁石榴石(YAG)基板上。釤、钬和釔鐵石榴石(SmIG, HoIG, and YIG)具有垂直於膜面的壓縮應變,而鉺和铥鐵石榴石(ErIG and TmIG)具有弱的拉伸應變。由於負磁致伸縮常數,因此SmIG和HoIG薄膜表現出相對強的垂直磁異向性(PMA)。隨著技術的發展,對高存儲容量和快訪問速度的需求不斷增加。因此我們選擇對擁有相對強PMA的SmIG薄膜進一步研究。藉由降低SmIG薄膜厚度,可使其具有更強的壓縮應變,進而獲得更強的PMA。相比之下,YIG在30-120奈米區間仍展現水平磁異向性(IMA)。這一發現表明磁性能受Y:Sm比的顯著影響。隨後,我們製備了一系列不同厚度、Sm摻雜濃度的SmYIG薄膜。振動樣品磁力計揭露隨著厚度的遞減和Sm摻雜濃度的增加,可使SmYIG薄膜具有較強的PMA。此外,我們展示了在不同Sm摻雜濃度下,SmYIG薄膜的臨界厚度。為基於REIG薄膜的高密度磁信息存儲鋪平道路。
YIG與反鐵磁材料的結合因其在自旋泵等應用中的潛力而備受關注。因此,我們於YIG薄膜上沉積氧化鈷(CoOx)薄膜以研究介面效應。由於CoOx薄膜於高溫缺氧環境下製備,所以其表面區域由純CoO組成,界面區域則為CoO和Co的混合物。CoOx/YIG薄膜不僅表現出低溫下由CoO提供的磁耦合,還表現出由鐵磁Co提供室溫負交換偏置(RT-NEB)。與CoOx/YIG薄膜相比,我們於YIG薄膜上製造了進一步氧化的CoO薄膜,並觀察到室溫正交換偏置(RT-PEB)。RT-PEB隨著外加磁化場增加而增加,並在外加磁化場為500 Oe時飽和。隨著溫度降低,PEB 逐漸轉變為 NEB。這些結果清楚地表明 CoO/YIG 雙層系統中PEB和NEB共存,而PEB歸因於CoO界面自旋的反平行耦合,而NEB歸因於AFM-FM耦合。
有機-無機鈣鈦礦(MAPbBr3)/鐵磁異質結構在光控自旋電子元件中已被廣泛探討。然而使用金屬鐵磁層作為底部電極仍然是一個挑戰。因此,我們提出插入氧化鋁(AlOx)或石墨烯(Gr)層的超薄異質界面來改善均勻性。通過原子力顯微鏡和掃描電子顯微鏡,我們觀察到MAPbBr3層成功地形成了緻密的連續薄膜。此外,AlO¬x或Gr層的存在可以有效地防止鈣鈦礦和鐵磁金屬薄膜之間的氧化和界面擴散。然而,MAPbBr3層在環境下很容易受溫度、濕度、氧氣濃度影響而分解。因此,我們製備了全無機銫鉛溴化物鈣鈦礦量子點(CsPbBr3 QDs)來替代鐵磁層上方的 MAPbBr3,並研究了藍光雷射對磁性的影響。隨著雷射照射時間的增加,CsPbBr3 QDs的表面形貌和特徵尺寸發生了顯著變化並逐漸演變,引發了一系列氧化還原和界面擴散過程,特別是在 CsPbBr3 QDs/Co異質結構的界面處。這些結果開啟了鈣鈦礦/鐵磁異質結構在自旋電子學應用研究。
Perovskite and rare earth iron garnet (REIG) thin films have excellent optical and magneto-optical properties. Therefore, combining these two materials can result in heterostructures with tunable optical and magnetic properties, which can be used in the fields of magneto-optical components, optical communication, and optical memory. In this study, we will deeply explore the respective potential values of perovskite and REIG thin films.
In recent years, several studies have shown that the strain-induced magnetic anisotropy of garnet films could be modulated by substituting RE elements for yttrium (Y). The REIG films (~100 nm) are prepared by pulsed laser deposition on (111)-oriented yttrium aluminum garnet (YAG) substrates. Samarium, holmium, and yttrium iron garnets (SmIG, HoIG, and YIG) show out-of-plane compressive strain, while erbium and thulium iron garnets (ErIG and TmIG) show weak out-of-plane tensile strains. Due to the negative magnetostriction constant, SmIG and HoIG films exhibit rather significant perpendicular magnetic anisotropy (PMA). High storage capacities and quick access times are becoming increasingly important as technology advances. Therefore, we selected to investigate SmIG films with rather strong PMA. By reducing the thickness of the SmIG film, it can have a stronger compressive strain and thus a stronger PMA. In contrast, the YIG film remains to display in-plane magnetic anisotropy (IMA) in the 30-120 nm thickness range. This finding shows that the magnetic properties are significantly influenced by the Y:Sm content ratio. Subsequently, we prepared a series of SmYIG films with different thicknesses and Sm-doped contents. The vibrating sample magnetometer reveals that the SmYIG films exhibit stronger PMA with decreasing thickness and increasing Sm-doped content. Furthermore, we demonstrate the critical thickness of SmYIG films with various Sm-doped content. These findings pave the way for high-density magnetic information storage based on REIG thin films.
The combination of YIG with antiferromagnetic materials has attracted much attention due to its potential in applications such as spin pumps. Therefore, we deposited cobalt oxide (CoOx) films on YIG films to investigate the interfacial effect. Since the CoOx thin film is fabricated in a high-temperature and oxygen-deficient environment, its surface region is composed of pure CoO, and the interface region is a mixture of CoO and Co. The CoOx/YIG films not only exhibit the magnetic coupling provided by CoO at low temperatures but also exhibit the room temperature negative exchange bias (RT-NEB) provided by ferromagnetic Co. Compared with CoOx/YIG films, we fabricated further oxidized CoO films on YIG films and discovered room temperature positive exchange bias (RT-PEB). The PEB increases with increasing applied magnetic field (HAF) and saturates at HAF = 500 Oe. The PEB gradually turns into NEB as the temperature decreases. These results clearly show that PEB and NEB can coexist in the CoO/YIG bilayer system; PEB is explained by the antiparallel coupling of CoO interfacial spins, whilst NEB is explained by the AFM-FM coupling.
Organic-inorganic perovskite (MAPbBr3)/ferromagnetic heterostructures have been extensively explored in light-controlled spintronic devices. However, it is still a challenge to apply a metallic ferromagnetic layer as the bottom electrode. We therefore propose using ultrathin aluminum oxide (AlOx) or graphene (Gr) films as heterointerfaces to improve uniformity. Through atomic force microscopy and scanning electron microscopy, we discovered that the MAPbBr3 layer is successful in forming a dense and continuous film. In addition, the presence of AlOx or Gr layers can effectively prevent the oxidation and interfacial diffusion between MAPbBr3 and ferromagnetic metal films. However, the MAPbBr3 layer is easily decomposed by changes in temperature, humidity, and oxygen concentration in the environment. Hence, we fabricated all-inorganic cesium lead bromide quantum dots (CsPbBr3 QDs) to replace MAPbBr3 on the ferromagnetic layer and investigated the blue laser effect on magnetism. The surface morphology and feature size of CsPbBr3 QDs influenced dramatically and gradually evolved with an increase in laser irradiation time. Thus, led to numerous of redox and interfacial diffusion processes, particularly at the interface of CsPbBr3 QDs/Co heterostructure. These results pave the way for the application of perovskite/ferromagnetic heterostructures in spintronics.
[1] W.A. Crossley, R.W. Cooper, J.L. Page, R.P. VanStapele, Faraday rotation in rare-earth iron garnets. Phys. Rev., 181 (1969) 896-904.
[2] F.N. Shafiee, R.S. Azis, I. Ismail, R. Nazlan, I.R. Ibrahim, A.S.A. Rahim, Magnetic and microwave properties of polycrystalline gadolinium iron garnet. Solid State Phenom., 268 SSP (2017) 287-291.
[3] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature, 464 (2010) 262-266.
[4] T. Bayaraa, C. Xu, D. Campbell, L. Bellaiche, Tuning magnetization compensation and Curie temperatures in epitaxial rare earth iron garnet films. Phys. Rev. B., 100 (2019) Article 214412.
[5] H. Yamahara, B. Feng, M. Seki, M. Adachi, M.S. Sarker, T. Takeda, M. Kobayashi, R. Ishikawa, Y. Ikuhara, Y. Cho, H. Tabata, Flexoelectric nanodomains in rare-earth iron garnet thin films under strain gradient. Commun. Mater., 2 (2021) 1-8.
[6] H. Wang, C. Du, P.C. Hammel, F. Yang, Strain-tunable magnetocrystalline anisotropy in epitaxial Y3Fe5O12 thin films. Phys. Rev. B - Condens. Matter Mater. Phys., 89 (2014) 1-5.
[7] P.C. Chang, V.R. Mudinepalli, S.Y. Liu, H.L. Lin, C.C. Hsu, Y.T. Liao, S. Obinata, T. Kimura, M.Y. Chern, F.Y. Lo, W.C. Lin, Interfacial exchange coupling-modulated magnetism in the insulating heterostructure of CoOx/yttrium iron garnet. J. Alloy. Compd., 875 (2021) Article 159948.
[8] K. Srinivasan, B.J.H. Stadler, Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics. Opt. Mater. Express, 12 (2022) 697-716.
[9] S.M. Zanjani, M.C. Onbaşlı, Modelling data for predicting new iron garnet thin films with perpendicular magnetic anisotropy. Data Br., 28 (2020).
[10] C.N. Wu, C.C. Tseng, Y.T. Fanchiang, C.K. Cheng, K.Y. Lin, S.L. Yeh, S.R. Yang, C.T. Wu, T. Liu, M. Wu, M. Hong, J. Kwo, High-quality thulium iron garnet films with tunable perpendicular magnetic anisotropy by off-axis sputtering - correlation between magnetic properties and film strain. Sci. Rep., 8 (2018) 1-8.
[11] H. Yamahara, M. Mikami, M. Seki, H. Tabata, Epitaxial strain-induced magnetic anisotropy in Sm3Fe5O12 thin films grown by pulsed laser deposition. J. Magn. Magn. Mater., 323 (2011) 3143-3146.
[12] A.M. Kalashnikova, V.V. Pavlov, Magneto-optical study of holmium iron garnet Ho3Fe5O12. Low. Temerature Phys., 38 (2012) 863.
[13] A. Sposito, T.C. May-Smith, G.B.G. Stenning, P.A.J. deGroot, R.W. Eason, Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Opt. Mater. Express, 3 (2013) 624.
[14] E. Sawatzky, E. Kay, Magnetic and structural properties of epitaxial and polycrystalline GdIG films prepared by rf sputtering. J. Appl. Phys., 42 (1971) 367-375.
[15] J.J. Bauer, E.R. Rosenberg, S. Kundu, K.A. Mkhoyan, P. Quarterman, A.J. Grutter, B.J. Kirby, J.A. Borchers, C.A. Ross, Dysprosium iron garnet thin films with perpendicular magnetic anisotropy on silicon. Adv. Electron. Mater., 6 (2020) 6-13.
[16] Iwasaki, Shun-ichi, Perpendicular magnetic recording—Its development and realization. Journal of magnetism and magnetic materials 324.3 (2012) 244-247.
[17] B. Tudu, T. Ashutosh, Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 146 (2017) 329-341.
[18] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, Th. Rasing, All-optical magnetic recording with circularly polarized light. Physical review letters 99.4 (2007) 047601.
[19] T. Li, A. Patz, L. Mouchliadis, J. Yan, T.A. Lograsso, I.E. Perakis, J. Wang, Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496.7443 (2013) 69-73.
[20] Ü. Özgür, A. Yahya, M. Hadis. Microwave ferrites, part 1: fundamental properties. Journal of materials science: Materials in electronics 20 (2009) 789-834.
[21] V. Sharma, B.K. Kuanr. Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. Journal of Alloys and Compounds 748 (2018) 591-600.
[22] M. Inoue, T. Fujii. A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures. Journal of applied physics 81.8 (1997) 5659-5661.
[23] T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, M. P. Kostylev, Realization of spin-wave logic gates. Applied Physics Letters 92.2 (2008) 022505.
[24] A.B. Cahaya, Enhancement of thermal spin pumping by orbital angular momentum of rare earth iron garnet. Journal of Magnetism and Magnetic Materials 553 (2022) 169248.
[25] O. Opuchovic, A. Kareiva, K. Mazeika, D. Baltrunas, Magnetic nanosized rare earth iron garnets R3Fe5O12: Sol–gel fabrication, characterization and reinspection. Journal of Magnetism and Magnetic Materials 422 (2017) 425-433.
[26] Y. Rao, D. Zhang, H. Zhang, L. Jin, Q. Yang, Z. Zhong, M. Li, C. Hong, B. Ma, Thickness dependence of magnetic properties in submicron yttrium iron garnet films. Journal of Physics D: Applied Physics 51.43 (2018) 435001.
[27] Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. science 306.5703 (2004) 1910-1913.
[28] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, E. Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Physical review letters 110.20 (2013) 206601.
[29] N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin; M. Wu, H.X. Tang, Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy. Applied Physics Letters 110.25 (2017) 252401.
[30] D. Tian, Y. Li, D. Qu, X. Jin, C.L. Chien, Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG. Applied Physics Letters 106.21 (2015) 212407.
[31] A. Aqeel, I.J. Vera-Marun, Z. Salman, T. Prokscha, A. Suter, B.J. van Wees, T.T.M. Palstra, Probing current-induced magnetic fields in Au| YIG heterostructures with low-energy muon spin spectroscopy. Applied physics letters 110.6 (2017) 062409.
[32] Y.S. Chun, K.M. Krishnan. Interlayer perpendicular domain coupling between thin Fe films and garnet single-crystal underlayers. Journal of applied physics 95.11 (2004) 6858-6860.
[33] A.C. Rastogi, V. N. Moorthy. Magnetic properties of yttrium iron garnet thin films changed through surface modification by CoO overlayer growth for magneto-optic recording applications. Journal of magnetism and magnetic materials 241.2-3 (2002) 228-239.
[34] H. Jin, S.R. Boona, Z. Yang, R.C. Myers, J.P. Heremans, Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets. Physical Review B 92.5 (2015) 054436.
[35] A. Yagmur, S. Karube, K. Uchida, K. Kondou, R. Iguchi, T. Kikkawa, Y. Otani, E. Saitoh, Spin-current-driven thermoelectric generation based on interfacial spin-orbit coupling. Applied Physics Letters 108.24 (2016) 242409.
[36] R. Das, V. Kalappattil, R. Geng, H. Luong, M. Pham, T. Nguyen, Tao Liu, Mingzhong Wu, M. H. Phan, H. Srikanth, Enhanced room-temperature spin Seebeck effect in a YIG/C60/Pt layered heterostructure. Aip Advances 8.5 (2018) 055906.
[37] T. Shang, Q.F. Zhan, H.L. Yang, Z.H. Zuo; Y.L. Xie, L.P. Liu, S.L. Zhang, Y. Zhang, H.H. Li, B.M. Wang, Y.H. Wu; S. Zhang, R.-W. Li, Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures. Applied Physics Letters 109.3 (2016) 032410.
[38] J. Cramer, F. Fuhrmann, U. Ritzmann, V. Gall, T. Niizeki, R. Ramos, Z. Qiu, D. Hou, T. Kikkawa, J. Sinova, U. Nowak, E. Saitoh, M. Kläui, Magnon detection using a ferroic collinear multilayer spin valve. Nature communications 9.1 (2018) 1089.
[39] W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy, Phys. Rev. 102 (1956) 1413.
[40] J. Nogués, I.K. Schuller, Exchange bias, J. Magn. Magn. Mater. 192 (1999) 203-232.
[41] B. Dieny, Giant magnetoresistance in spin-valve multilayers, J. Magn. Magn. Mater. 136 (1994) 335-359.
[42] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Exchange bias in nanostructures, Phys. Rep. 422 (2005) 65-117.
[43] A.E. Berkowitz, K. Takano, Exchange anisotropy — a review, J. Magn. Magn. Mater. 200 (1999) 552-570.
[44] J. Nogués, D. Lederman, T.J. Moran, I.K. Schuller, Positive exchange bias in FeF2-Fe bilayers, Phys. Rev. Lett. 76 (1996) 4624.
[45] J. Nogués, L. Morellon, C. Leighton, M.R. Ibarra, I.K. Schuller, Antiferromagnetic spin flop and exchange bias, Phys. Rev. B 61 (2000) R6455.
[46] N.N. Phuoc, N.P. Thuy, N.A. Tuan, L.T. Hung, N.T. Thanh, N.T. Nam, Coexistence of positive and negative exchange bias in CrMn/Co bilayers, J. Magn. Magn. Mater. 298 (2006) 43-47.
[47] Z. Qiu, D. Hou, Spin transport in antiferromagnetic insulators, Chin. Phys. B 28 (2019) 088504.
[48] Q. Li, M. Yang, C. Klewe, P. Shafer, A.T. N’Diaye, D. Hou, T.Y. Wang, N. Gao, E. Saitoh, C. Hwang, R.J. Hicken, J. Li, E. Arenholz, Z.Q. Qiu, Coherent ac spin current transmission across an antiferromagnetic CoO insulator, Nat. commun. 10 (2019) 1-6.
[49] E.N. Abarra, K. Takano, F. Hellman, A.E. Berkowitz, Thermodynamic measurements of magnetic ordering in antiferromagnetic superlattices, Phys. Rev. Lett. 77 (1996) 3451.
[50] P.C. Chang, V.R. Mudinepalli, S.Y. Liu, H.L. Lin, C.C. Hsu, Y.T. Liao, S. Obinata, T. Kimura, M.Y. Chern, F.Y. Lo, W.C. Lin, Interfacial exchange coupling-modulated magnetism in the insulating heterostructure of CoOx/yttrium iron garnet, J. Alloy. Compd. 875 (2021) 159948.
[51] S. Laureti, E. Agostinelli, G. Scavia, G. Varvaro, V.R. Albertini, A. Generosi, B. Paci, A. Mezzi, S. Kaciulis, Effect of oxygen partial pressure on PLD cobalt oxide films, Appl. Surf. Sci. 254 (2008) 5111-5115.
[52] J. Wang, X. Pan, C. Zhang, H. Guo, Z.V. Vardeny, Light-controlled spintronic device based on hybrid organic–inorganic. J. Photonics Energy, 8 (2018) 1.
[53] J. Wang, C. Zhang, H. Liu, X. Liu, H. Guo, D. Sun, Z.V. Vardeny, Tunable spin characteristic properties in spin valve devices based on hybrid organic–Inorganic perovskites. Adv. Mater. 31 (2019) 1-6.
[54] D. Li, G. Yu, Innovation of materials, devices, and functionalized interfaces in organic spintronics. Adv. Funct. Mater. 31 (2021) 1-27.
[55] J. Wang, C. Zhang, H. Liu, R. McLaughlin, Y. Zhai, S.R. Vardeny, X. Liu, S. McGill, D. Semenov, H. Guo, R. Tsuchikawa, V.V. Deshpande, D. Sun, Z.V. Vardeny, Spin-optoelectronic devices based on hybrid organic–inorganic trihalide perovskites. Nature Commun. 10 (2019) 1-6.
[56] M. Wang, H. Xu, T. Wu, H. Ambaye, J. Qin, J. Keum, I.N. Ivanov, V. Lauter, B. Hu, Optically induced static magnetization in metal halide perovskite for spin-related optoelectronics. Adv. Sci., 8 (2021) 1-8.
[57] A. Privitera, M. Righetto, F. Cacialli, M.K. Riede, Perspectives of organic and perovskite-based spintronics. Adv. Opt. Mater. 9 (2021).
[58] S.S. Yeh, S.Y. Liu, C.C. Hsu, H.C. Hung, M.C. Niu, P.H. Lo, Y.C. Chao, W.C. Lin, Discrete interfacial effects of organic lead halide perovskite coating on magnetic underlayer: MAPbBr3/FePd heterostructure. Surf. Interfaces, 24 (2021) Article 101133.
[59] J.N. Fru, N. Nombona, M. Diale, Growth and degradation of methylammonium lead tri-bromide perovskite thin film at metal/perovskite interfaces. Thin Solid Films, 722 (2021) Article 138568.
[60] M.A. Najeeb, Z. Ahmad, R.A. Shakoor, A. Alashraf, J. Bhadra, N.J. Al-Thani, S.A. Al-Muhtaseb, A.M.A. Mohamed, Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells. Opt. Mater. (Amst.) 73 (2017) 50-55.
[61] H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 22 (2016) 223-231.
[62] S. Zhuang, X. Ma, D. Hu, X. Dong, Y. Zhang, B. Zhang, Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure. Opt. Mater., 77 (2018) 25-29.
[63] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, 306 (2016) 666–669.
[64] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev., 41 (2012) 666-686.
[65] L. Qiu, S. He, L.K. Ono, Y. Qi, Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10 (2019) 1902726.
[66] Y. Zhao, C. Li, L. Shen, Recent research process on perovskite photodetectors: a review for photodetector-materials, physics, and applications. Chinese Phys. B 27 (2018) 127806.
[67] K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan; W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562 (2018) 245–248.
[68] J. Wang, C. Zhang, H. Liu, R. McLaughlin, Y. Zhai, S.R. Vardeny, X. Liu, S. McGill, D. Semenov, H. Guo, R. Tsuchikawa, V.V. Deshpande, D. Sun, Z.V. Vardeny, Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10 (2019) 1–6.
[69] P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang, D. Sun, Z.-G. Yu, Z.V. Vardeny, Y.S. Li, Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites. Nat. Phys. 13 (2017) 894–899.
[70] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for 𝛼-FAPbI3 perovskite solar cells. Nature, 592 (2021) 381–385.
[71] Y.Y. Zhang, S. Chen, P. Xu, H. Xiang, X.G. Gong, A. Walsh, S.H. Wei, Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chinese Phys. Lett. 35 (2018) 036104.
[72] H. Cho, J.S. Kim, Y.H. Kim, T.W. Lee, Influence of A-Site cation on the thermal stability of metal halide perovskite polycrystalline films. J. Inf. Disp. 19 (2018) 53–60.
[73] G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3 (2015) 19688–19695.
[74] Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew. Chemie Int. Ed. 56 (2017) 1190–1212.
[75] G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16 (2016) 4838–4848.
[76] A. Shinde, R. Gahlaut, S. Mahamuni, Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121 (2017) 14872–14878.
[77] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26 (2016) 2435-2445.
[78] F. Xu, X. Kong, W. Wang, F. Juan, M. Wang, H. Wei, J. Li, B. Cao, Quantum size effect and surface defect passivation in size-controlled CsPbBr3 quantum dots. J. Alloys Compd. 831 (2020) 154834.
[79] M.C. Yen, C.J. Lee, K.H. Liu, Y. Peng, J. Leng, T.H. Chang, C.C. Chang, K. Tamada, Y.J. Lee, All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12 (2021) 1–12.
[80] L. Pan, Y. Feng, J. Huang, L.R. Cao, Comparison of Zr, Bi, Ti, and Ga as metal contacts in inorganic perovskite CsPbBr3 gamma-ray detector. IEEE Trans. Nucl. Sci. 67 (2020) 2255–2262.
[81] M. Wang, H. Xu, T. Wu, H. Ambaye, J. Qin, J. Keum, I.N. Ivanov, V. Lauter, B. Hu, Optically induced static magnetization in metal halide perovskite for spin-related Optoelectronics. Adv. Sci. 8 (2021) 2004488.
[82] A.E. Berkowitz, K. Takano. Exchange anisotropy—a review. Journal of Magnetism and Magnetic materials 200.1-3 (1999) 552-570.
[83] P. Chiggiato, Vacuum Technology for Superconducting Devices. arXiv (2015) arXiv:1501.07162.
[84] A.C. Jones, C.R. Whitehouse, J.S. Roberts. Chemical approaches to the Metalorganic CVD of Group‐III Nitrides. Chemical Vapor Deposition 1.3 (1995) 65-74.
[85] G. Lucovsky, D.V. Tsu. Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5.4 (1987) 2231-2238.
[86] V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, C. Coletti, Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Materials 2.1 (2015) 014006.
[87] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum 56.3 (2000) 159-172.
[88] C.C. Hsu, K.L. Hsu, P.C. Chang, S.Y. Liu, C.C. Hsu, W.C. Lin, Organic/metal interface–modulated magnetism in [Fe/C60]3 multilayers and Fe-C60 composites. Nanotechnology 31.32 (2020) 325701.
[89] S.Y. Liu, Z.Y. Lin, Y.R. Chang, Y.T. Liao, P.H. Wu, S.Y. Huang, W.C. Lin, F.Y. Lo Strain-induced magnetic anisotropy of REIG thin films grown on YAG (111) substrates by pulsed laser deposition. Journal of Alloys and Compounds 922 (2022) 166217.
[90] S.M. Shahrokhvand, A.S.H. Rozatian, M. Mozaffari, S.M. Hamidi, M.M. Tehranchi, Preparation and investigation of Ce: YIG thin films with a high magneto-optical figure of merit. Journal of Physics D: Applied Physics 45.23 (2012) 235001.
[91] H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface science reports 59.1-6 (2005) 1-152.
[92] G. Meyer, N.M. Amer. Erratum: Novel optical approach to atomic force microscopy [Appl. Phys. Lett. 5 3, 1045 (1988)]. Applied physics letters 53.24 (1988) 2400-2402.
[93] W.Zhou, R.P. Apkarian, Z.L. Wang, D. Joy, Fundamentals of scanning electron microscopy (SEM). Scanning Microscopy for Nanotechnology: Techniques and Applications (2007) 1-40.
[94] H. Seiler, Secondary electron emission in the scanning electron microscope. Journal of Applied Physics 54.11 (1983) R1-R18.
[95] A. Mohammed, A. Abdullah. Scanning electron microscopy (SEM): A review. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. (2018) 7-9.
[96] P. M. Oppeneer. Theory of the magneto-optical Kerr effect in ferromagnetic compounds. Institute for Theoretical Physics Technical University of Dresden. 1999.
[97] C.C. Hsu, Z.Y. Lin, P.C. Chang, H.C. Chiu, H.W. Chen, H.L. Liu, F. Bisio, W.C. Lin, Magnetic decoupling of ferromagnetic coverage across atomic step of MoS2 flakes on SiO2 surface. Department of Physics National Taiwan Normal University Master Thesis. 50 (2018) 415001.
[98] F. Oliveira, Faraday Effect and other Magneto-Optic Effects in Semiconductors. Diss. PhD thesis, University of Minho, Braga, Portugal, 2015.
[99] R.E. Camley, Z. Celinski, R.L. Stamps, Magnetism of surfaces, interfaces, and nanoscale materials. Elsevier, 2015.
[100] MicroSense, Model EZ9 vibrating sample magnetometer. Facilities Guide, 2013.
[101] Y.S. Chen, J.G. Lin, How to analyze the non-collinear synthetic ferrimagnets with ferromagnetic resonance. National Taiwan University, 2017.
[102] C.F. Pai, MSE 7025 Magnetic materials (and spintronics). National Taiwan University, 2016.
[103] F.M. Pan, Ultra-thin film analysis by angled resolved x-ray photoelectron spectroscopy. National Nano Device Laboratories, 2002.
[104] J.L. Jou, W.V. Yeh, X-ray photoelectron spectrometer, National Dong Hwa University, 2018.
[105] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32 (1976) 751–767.
[106] A.B. Bhosale, S.B. Somvanshi, V.D. Murumkar, K.M. Jadhav, Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour, Ceram. Int. 46 (2020) 15372–15378.
[107] M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho,Yb) nanoferrites for high frequency applications, Ceram. Int. 43 (2017) 17032–17040.
[108] Y. Zhang, Q. Yang, X. Liu, D. Zhang, Y. Rao, H. Zhang, Comparison of the magnetic properties of bismuth substituted thulium iron garnet and yttrium iron garnet films, AIP Advances, 11 (2021) 065113.
[109] S.M. Zanjani, M.C. Onbaşlı, Predicting new iron garnet thin films with perpendicular magnetic anisotropy, J. Magn. Magn. Mater. 499 (2020) 166108.
[110] K. Srinivasan, C. Radu, D. Bilardello, P. Solheid, B.J.H. Stadler, Interfacial and Bulk Magnetic Properties of Stoichiometric Cerium Doped Terbium Iron Garnet Polycrystalline Thin Films, Adv. Funct. Mater. 30 (2020) 2000409.
[111] S.A. Manuilov, S.I. Khartsev, A.M. Grishin, Pulsed laser deposited films: Nature of magnetic anisotropy I, J. Appl. Phys. 106 (2009) 123917.
[112] A. Krysztofik, S. Özoğlu, R.D. McMichael, E. Coy, Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate, Sci. Rep. 11 (2021) 1–10.
[113] G. Vilela, H. Chi, G. Stephen, C. Settens, P. Zhou, Y. Ou, D. Suri, D. Heiman, J.S. Moodera, Strain-tuned magnetic anisotropy in sputtered thulium iron garnet ultrathin films and TIG/Au/TIG valve structures, J. Appl. Phys. 127 (2020) 115302.
[114] J. Ding, C. Liu, Y. Zhang, U. Erugu, Z. Quan, R. Yu, E. McCollum, S. Mo, S. Yang, H. Ding, X. Xu, J. Tang, X. Yang, M. Wu, Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy and Low Damping, Phys. Rev. Appl. 14 (2020) 1.
[115] E. Popova, N. Keller, F. Jomard, L. Thomas, M.C. Brianso, F. Gendron, M. Guyot, M. Tessier, Exchange coupling in ultrathin epitaxial yttrium iron garnet films, Eur. Phys. J. B. 31 (2003) 69–74.
[116] M. PARDAVI-HORVATH, P.E. WIGEN, Defect and Impurity Related Effects in Substituted Epitaxial YIG Crystals, J. Magn. Soc. Japan. 11 (1987) S1_161-166.
[117] E.R. Rosenberg, L. Beran, C.O. Avci, C. Zeledon, B. Song, C. Gonzalez-Fuentes, J. Mendil, P. Gambardella, M. Veis, C. Garcia, G.S.D. Beach, C.A. Ross, Magnetism and spin transport in rare-earth-rich epitaxial terbium and europium iron garnet films, Phys. Rev. Mater. 2 (2018) 1–8.
[118] P. Cao Van, S. Surabhi, V. Dongquoc, R. Kuchi, S.G. Yoon, J.R. Jeong, Effect of annealing temperature on surface morphology and ultralow ferromagnetic resonance linewidth of yttrium iron garnet thin film grown by rf sputtering, Appl. Surf. Sci. 435 (2018) 377–383.
[119] Y. Wu, Z. Xu, J. Chen, X. Xu, J. Miao, Y. Jiang, The anisotropy of spin Hall magnetoresistance in Pt/YIG structures, Appl. Phys. A, 127 (2021) 419.
[120] C.O. Avci, A. Quindeau, C.F. Pai, M. Mann, L. Caretta, A.S. Tang, M.C. Onbasli, C.A. Ross, G.S.D. Beach, Current-induced switching in a magnetic insulator, Nat. Mater. 16 (2017) 309–314.
[121] L. Shen, G. Wu, T. Sun, Z. Meng, C. Zhou, W. Liu, K. Qiu, Z. Ma, H. Huang, Y. Lu, Z. Zhang, Z. Sheng, Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures, Chin. Phys. B, 30 (2021) 127502.
[122] M.E. Cowher, T.O. Sedgwick, Low temperature CVD garnet growth, Journal of Crystal Growth, 46 (1979) 399-402.
[123] S. M. Zanjani, M. C. Onbaşlı. Predicting new iron garnet thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 499 (2020) Article 166108
[124] C. Holzmann, A. Ullrich, O. -T. Ciubotariu, M. Albrecht. Stress-induced magnetic properties of gadolinium iron garnet nanoscale-thin films: implications for spintronic devices. ACS Applied Nano Materials, 5 (2022) 1023-1033.
[125] V.D. Duong, P.C. Van, T.N. Thi, H.Y. Ahn, V.A. Cao, J. Nah, G. Kim, K.S. Lee, J.W. Kim, J.R. Jeong, Interfacial roughness driven manipulation of magnetic anisotropy and coercivity in ultrathin thulium iron garnet films. Journal of Alloys and Compounds 927 (2022) 166800.
[126] X. Zhang, L. Jin, D. Zhang, B. Liu, H. Meng, L. Zhang, Z. Zong, X. Tang, Strong Perpendicular Anisotropy and Anisotropic Landé Factor in Bismuth-Doped Thulium Garnet Thin Films. Frontiers in Materials (2022) 240.
[127] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32.5 (1976) 751-767.
[128] J. Cunningham Jr, Richard, E.E. Anderson. Samarium substitutions in yttrium iron garnet. Journal of Applied Physics 31.5 (1960) S45-S46.
[129] E. F. Knellerand, R. Hawig. IEEE Trans. Magn. 27 (1991) 3588.
[130] S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn, H. Maier-Flaig, M. Althammer, H. Huebl, R. Gross, R D. McMichael, M.D. Stiles, S.T.B. Goennenwein, M. Weiler. Phys. Rev. Lett. 120 (12) (2018) Article 127201.
[131] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart. Appl. Surf. Sci., 257 (2011) 2717.
[132] S. L. Wen, C. Yao, D. L. Wang, C. H. Dong, X. P. Zhang, Y. W. Ma, S. Awaji, K. Watanabe. Nov. Magn., 30 (2) (2017) 463.
[133] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y. Sun, M. Wu. Phys. Rev. Lett., 107 (6) (2011) Article 066604.
[134] B. Bhoi, N. Venkataramani, R.P.R.C. Aiyar, S. Prasad. IEEE Trans. Magn., 49 (2013) 990.
[135] A. Delgado, Y. Guerra, E. Padrón-Hernández, R. Peña-Garcia.Mater. Res. Express, 5 (2018) Article 026419.
[136] B. Bhoi, B. Kim, Y. Kim, M.K. Kim, J.H. Lee, S.K. Kim, Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films, J. Appl. Phys. 123 (2018) 203902.
[137] B. Bhoi, B. Sahu, N. Venkataramani, R.P.R.C. Aiyar, S. Prasad, Preparation of low microwave loss YIG thin films by pulsed laser deposition, IEEE Trans. Magn. 51 (2015) 1-4.
[138] S.Y. Liu, Z.Y. Lin, Y.R. Chang, Y.T. Liao, P.H. Wu, S.Y. Huang, W.C. Lin, F.Y. Lo, Strain-induced magnetic anisotropy of REIG thin films grown on YAG(111) substrates by pulsed laser deposition, J. Alloy. Compd. 922 (2022) 166217.
[139] R. Kumar, S.N. Sarangi, D. Samal, Z. Hossain, Positive exchange bias and inverted hysteresis loop in Y3Fe5O12/Gd3Ga5O12, Phys. Rev. B 103 (2021) 064421.
[140] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, B. Jeyadevan, K. Tohji, K. Chattopadhyay, Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel, J. Magn. Magn. Mater. 238 (2002) 281-287.
[141] M. Molina-Ruiz, A.F. Lopeandía, F. Pi, D. Givord, O. Bourgeois, and J. Rodríguez-Viejo, Evidence of finite-size effect on the Néel temperature in ultrathin layers of CoO nanograins, Phys. Rev. B 83 (2011) 140407.
[142] A.K. Kundu, S. Barman, K.S.R. Menon, Evolution of surface antiferromagnetic Néel temperature with film coverage in ultrathin MnO films on Ag(001), J. Magn. Magn. Mater. 466 (2018) 186-191.
[143] Y. Kota, H. Imamura, M. Sasaki, Strain-induced Néel temperature enhancement in corundum-type Cr2O3 and Fe2O3, Appl. Phys. Express 6 (2013) 113007.
[144] Liu C. M., Wang W. H., Jiang P. H., Lin W. C. Magnetic patterning through graphene protection against oxidation and interlayer diffusion. Nanotechnology, 30 (2019).
[145] K. Xia, W. Wu, M. Zhu, X. Shen, Z. Yin, H. Wang, S. Li, M. Zhang, H. Wang, H. Lu, A. Pan, C. Pan, Y. Zhang, CVD growth of perovskite/graphene films for high-performance flexible image sensor. Sci. Bull., 65 (2020) 343-349.
[146] V.Q. Dang, G.S. Han, T.Q. Trung, L.T. Duy, Y.U. Jin, B.U. Hwang, H.S. Jung, N.E. Lee, Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. Carbon, 105 (2016) 353-361.
[147] A. Dymshits, A. Rotem, L. Etgar, High voltage in hole conductor free organo metal halide perovskite solar cells. J. Mater. Chem. A, 2 (2014) 20776-20781.
[148] N. Droseros, G. Longo, J.C. Brauer, M. Sessolo, H.J. Bolink, N. Banerji, Origin of the enhanced photoluminescence quantum yield in MAPbBr3 perovskite with reduced crystal size. ACS Energy Lett., 3 (2018) 1458-1466.
[149] R.K. Singh, R. Kumar, A. Kumar, N. Jain, R.K. Singh, J. Singh, Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. J. Alloys Compd., 743 (2018) 728-736.
[150] A. Privitera, M. Righetto, F. Cacialli, M.K. Riede, Perspectives of organic and perovskite-based spintronics. Adv. Opt. Mater., 9 (2021).
[151] W.C. Lin, T.Y. Ho, C.S. Chi, C.J. Tsai, Modulation of magnetic anisotropy in Fe/Si(111) thin films through interface property. Thin Solid Films, 542 (2013) 335-359.
[152] W.C. Lin, F.Y. Lo, Y.Y. Huang, C.H. Wang, M.Y. Chern, Canted magnetization in Fe thin films on highly oriented pyrolytic graphite. J. Appl. Phys., 110 (2011) 83911.
[153] C.S. Chi, B.Y. Wang, W.F. Pong, T.Y. Ho, C.J. Tsai, F.Y. Lo, M.Y. Chern, W.C. Lin, Uniaxial magnetic anisotropy in Pd/Fe bilayers on Al2O3(0001) induced by oblique deposition. J. Appl. Phys., 111 (2012) Article 123918.
[154] W.T. Tu, C.H. Wang, Y.Y. Huang, W.C. Lin, Growth and magnetism of low-temperature deposited Fe/Si(111) films as an intermediate layer for suppression of silicide formation. J. Appl. Phys., 109 (2011) Article 023908.
[155] H.P. Chang, E.D. Chu, Y.T. Yeh, Y.C. Wu, F.Y. Lo, W.H. Wang, M.Y. Chern, H.C. Chiu, Influence of oxygen vacancies on the frictional properties of nanocrystalline zinc oxide thin films in ambient conditions. Langmuir, 33 (2017) 8362-837.
[156] L. Zhang, R. Dillert, D. Bahnemann, M. Vormoor, Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy Environ. Sci., 5 (2012) 7491-7507.
[157] S. Kim, H.V. Quy, H.W. Choi, C.W. Bark, Effect of UV-light treatment on efficiency of perovskite solar cells (PSCs), 13 (2020) 1069.
[158] E.G. Kim, J.L. Brédas, The nature of the aluminum-aluminum oxide interface: A nanoscale picture of the interfacial structure and energy-level alignment. Org. Electron., 14 (2013) 569-574.
[159] I. Giner, M. Maxisch, C. Kunze, G. Grundmeier, Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates. Appl. Surf. Sci., 283 (2013) 145-153.
[160] A. Pathak, A. Bora, M. Tornow, T. Haeberle, P. Lugli, J. Schwartz, High-yield metal transfer printing on alkyl bis-phosphonate monolayers. Nanotechnology, 15 (2015) 1559-1563.
[161] S.H. Lim, S.W. Seo, H. Lee, H. Chae, S.M. Cho, Extremely flexible organic–inorganic moisture barriers. Korean J. Chem. Eng., 33 (2016) 1971-1976.
[162] Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S.P. Surwade, L. Li, H. Liu, Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature Mater., 12 (2013) 925-931.
[163] A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D’Urso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir, 30 (2014) 8598-8606.
[164] T. Hatt, J. Bartsch, V. Davis, A. Richter, S. Kluska, S.W. Glunz, M. Glatthaar, A. Fischer, Hydrophobic AlOx surfaces by adsorption of a SAM on large areas for application in solar cell metallization patterning. ACS Appl. Mater. Interfaces, 13 (2021) 5803-5813.
[165] S.S. Yeh, S.Y. Liu, C.C. Hsu, H.C. Hung, M.C. Niu, P.H. Lo, Y.C. Chao, W.C. Lin, Discrete interfacial effects of organic lead halide perovskite coating on magnetic underlayer: MAPbBr3/FePd heterostructure. Surfaces and Interfaces, 24 (2021) 101133.
[166] S.Y. Liu, Z.E. Lin, B.T. Wu, T.H. Chen, H.C. Hung, C.H. Yin, C.T. Hsieh, C.M. Liu, L.J. Liaw, S.Y. Hsu, P.C. Chang, Y.C. Chao, W.C. Lin, Improvement from discrete to uniform wetting of organic perovskite on ferromagnetic metals through a heterointerface. Appl. Surf. Sci. 601 (2022) 154180.
[167] X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.W. Zhang, P.F. Tan, S. Chen, High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 7 (2017) 10391–10396.
[168] J. Li, L. Wang, X. Yuan, B. Bo, H. Li, J. Zhao, X. Gao, Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals. Mater. Res. Bull. 102 (2018) 86–91.
[169] D. Lederman, Y. Wang, E.H. Morales, R.J. Matelon, G.B. Cabrera, U.G. Volkmann, A.L. Cabrera, Magnetooptic properties of Fe/Pd and Co/Pd bilayers under hydrogen absorption. Appl. Phys. Lett. 85 (2004) 615-617.
[170] W.C. Lin, C.S. Chi, T.Y. Ho, C.J. Tsai, F.Y. Lo, H.C. Chuang, M.Y. Chern, Hydrogenation-induced change of magneto optical Kerr effect in Pd/Fe bilayers. J. Appl. Phys. 112 (2012) 063914.
[171] Y. Chang, Y.J. Yoon, G. Li, E. Xu, S. Yu, C.H. Lu, Z. Wang, Y. He, C.H. Lin, B.K. Wagner, V.V. Tsukruk, Z. Kang, N. Thadhani, Y. Jiang, Z. Lin, Z. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS Appl. Mater. Interfaces, 10 (2018) 37267-37276.
[172] Y. Xie, B. Peng, I. Bravić, Y. Yu, Y. Dong, R. Liang, Q. Ou, B. Monserrat, S. Zhang, Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci. 7 (2020) 2001698.
[173] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257 (2011) 2717–2730.
[174] P.C. Chang, V.R. Mudinepalli, S.Y. Liu, H.L. Lin, C.C. Hsu, Y.T. Liao, S. Obinata, T. Kimura, M.Y. Chern, F.Y. Lo, W.C. Lin, Interfacial exchange coupling modulated magnetism in the insulating heterostructure of CoO𝑥/yttrium iron garnet. J. Alloys Compd. 875 (2021) 159948.
[175] Z. Zhang, H.C. Nallan, B.M. Coffey, T.Q. Ngo, T. Pramanik, S.K. Banerjee J.G. Ekerdt, Atomic layer deposition of cobalt oxide on oxide substrates and low temperature reduction to form ultrathin cobalt metal films. Journal of Vacuum Science & Technology A: Vacuum, Surface, and Films 37 (2019) 010903.
[176] D.W. Oxtoby, H.P. Gillis, A. Campion, H.H. Helal, K.P. Gaither, Principles of modern chemistry seventh edition. Cengage Learning 2011.
[177] C. Chuang, W.Y. Chang, W.H. Chen, J.S. Tsay, W.B. Su, H.W. Chang, Y.D. Yao, Thickness dependent reactivity and coercivity for ultrathin Co/Si(111) films. Thin Solid Films 519 (2011) 8371-8374.
[178] H.W. Chang, J.S. Tsay, W.Y. Chang, K.T. Huang, Y.D. Yao, Effect of oxygen exposure on the magnetic properties of ultrathin Co/Si(111)-7x7 films. J. Magn. Magn. Mat. 321 (2009) 2398-2401.
[179] K. Shimizu, J. Tachibana, Y. Arisaka, K. Sato, Read-write characteristics and magnetic properties of Co-CoO obliquely evaporated film on a cobalt oxide underlayer. IEEE Trans. Magn. 40 (2004) 2398-2400.
[180] R. Morel, A. Brenac, C. Portemont, Exchange bias and coercivity in oxygen-exposed cobalt clusters. J. Appl. Phys. 95 (2004) 3757-3760.