研究生: |
薛喬方 Syue, Jiao-Fang |
---|---|
論文名稱: |
層狀二硫化鉬在共振激發下的偏振拉曼光譜 Polarized Raman Spectrum of Layered Molybdenum Disulfide under Resonant Excitation |
指導教授: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen |
口試委員: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen 董容辰 Tung, Jung-Chen |
口試日期: | 2022/12/21 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 拉曼光譜 、二硫化鉬 、偏振解析 、溫度變化 |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300164 |
論文種類: | 學術論文 |
相關次數: | 點閱:254 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
偏振拉曼光譜已經被應用在測量二維材料上,包括石墨稀與過渡金屬二硫化鉬,尤其是使用線偏振和圓偏振光為激發光線。量測不同溫度下的二硫化鉬受不同偏振入射光影響的拉曼張量,我們可以知道聲子振動模式是如何表現其偏振態。在本實驗中,利用紅光共振激發變溫下的二硫化鉬,結果顯示,在低溫狀態下,線偏振的入射光激發時,面內振動(E')和面外振動(A_1')模式表現出線偏振的散射光,b mode則是呈現非各向同性(anisotropic),隨著溫度的上升,E' 、A_1'仍維持在線偏振的散射光,而b mode則漸漸改變成線偏振的散射光;圓偏振的入射光激發時,低溫狀態的E'和A_1'模態呈現出旋向守恆(helicity-conserve),b mode 則是表現出旋向轉換(helicity-exchange),隨著溫度的上升,E' 、A_1'仍維持旋向守恆,但b mode會漸漸變成旋向守恆。
實驗結果顯示了b mode的獨特性,因此我們引用了一些電子-聲子耦合如何影響拉曼強度的偏振態有關的論文,來解釋這個特殊的現象,同時深入探討層狀二維材料的聲子與光子之間的交互作用,以便提供未來先進材料應用更多重要的基礎與應用。
Wang, S., Sawada, H., Allen, C. S., Kirkland, A. I., & Warner, J. H. (2017). Orientation dependent interlayer stacking structure in bilayer MoS2 domains. Nanoscale, 9(35), 13060–13068.
Shieh J. M., Lai Y. F., Lin Y. C., & Fang J. Y. (2005). Photoluminescence: Principles, Structure, and Applications 科儀新知, 146期 (2005 / 06 / 01), P39 – 51
Cai Y., Lan J., Zhang G., & Zhang Y. W. (2014). Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 Physical Review B 89, 035438
Tonndorf P., Schmidt R., Böttger P., Zhang X., Börner J., Liebig A., ...Bratschitsch R. (2013). Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2.Optics Express Vol. 21, Issue 4, pp. 4908-4916
Li H., Zhang Q., Yap C. C. R., Tay B. K., Edwin T. H. T., Olivier A., Baillargeat D.(2012). From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced functional materials, Volume 22, Issue 7, P1321-1538
Lin Z., Liu W., Tian S. , Zhu K. , Huang Y., & Yang Y.(2021). Thermal expansion coefficient of few-layer MoS2 studied by temperature-dependent Raman spectroscopy. Scientific Reports volume 11, Article number: 7037
Golovynskyi S., Irfan I., Bosi M., Seravalli L., Datsenko O. I., Golovynska I., Li B., Lin D., & Qu J.(2020) Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science 515(13):146033
Cadiz F., Courtade E., Robert C., Wang G., Shen Y., Cai H., Taniguchi T., Watanabe K., Carrere H., Lagarde D., ... Urbaszek B.(2017). Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures. Physical Review X 7, 021026
Kaupmees R., Komsa H. P., & Krustok J.(2018). Photoluminescence Study of B-Trions in MoS2 Monolayers with High Density of Defects. physica status solidi (b) Volume256, Issue3, March 2019, 1800384
Castellanos-Gomez A., Zant H. S. J., & Steele G. A.(2014). Folded MoS2 layers with reduced interlayer coupling. Nano Research volume 7, pages 572–578
Bera, A., & Sood, A.K. (2014). Insights into Vibrational and Electronic Properties of MoS2 Using Raman, Photoluminescence, and Transport Studies.
Zhang X., Qiao X. F., Shi W., Wu J.B., Jianga D. S., & Tan P. H.(2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev., 2015,44, 2757-2785
Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., Ferrari, A. C., & Tan, P. H. (2013). Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B, 87(11), 115413
Chen S.Y., Zheng C., Fuhrer M. S., &Yan J.(2015). Helicity-Resolved Raman Scattering of MoS2, MoSe2, WS2, and WSe2 Atomic Layers. Nano Lett. 2015, 15, 4, 2526–2532
Sekine T., Uchinokura K., Nakashizu T., Matsuura E., & Yoshizakit R.(1984). Dispersive Raman Mode of Layered Compound 2H-MoS2, under the Resonant Condition. Journal of the Physical Society of Japan Vol. 53, No. 2, February, 1984, pp. 811-818
Romeo M.(2004). Electromagnetoacoustic surface waves on dispersive piezoelectric layered media. The Journal of the Acoustical Society of America 116, 1488
Livneh T., & Sterer E.(2010). Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Physical Review B 81, 195209
Carvalho, B., Wang, Y., Mignuzzi, S. et al (2017). Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat Commun 8, 14670
黃松勳(2017). 二維材料的發展與應用進程.Research Portal 科技政策觀點 2018 NO.7。取自 https://reurl.cc/qZ9dZ3
林彥甫(2019). 二維電子元件的發展可否成為下一世代的希望?! 物理雙月刊。取自 https://reurl.cc/x1YZlb
Chhowalla, M., Shin, H., Eda, G. et al (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275
Zhao Y., Zhang S., Shi Y., Zhang Y., Saito R., Zhang J., & Tong L.(2020). Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano 2020, 14, 8, 10527–10535
Kaasbjerg K., Thygesen K. S., & Jauho A. (2013). Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Physical Review B 87, 235312