簡易檢索 / 詳目顯示

研究生: 鍾耀賢
Yao-Hsien Chung
論文名稱: 一維三元金屬介電質光子晶體頻帶增寬之研究
BAND GAP EXTENSION IN A ONE-DIMENSIONAL TERNARY METAL-DIELECTRIC PHOTONIC CRYSTAL
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 34
中文關鍵詞: 光子晶體能隙三元一維增寬低頻截止頻率
英文關鍵詞: PHOTONIC CRYSTAL, BAND GAP, TERNARY, ONE-DIMENSIONAL, EXTENSION, LOW CUTOFF FREQUENCY
論文種類: 學術論文
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體是由兩個或是多個不同折射率物質的人造週期性介質堆疊,光子晶體存在著光子能隙,光子能隙廣泛應用在光子晶體元件上,在這篇論文我們首先探討一維三元光子晶體能隙增寬,其中每一個週期是由兩個介電質夾著金屬層的三元結構,我們將要討論兩個主題,首先探討增加金屬層會強烈地擴大光子晶體能隙,相較於沒有添加金屬層的光子晶體(介電質-介電質-光子晶體)
    接著我們探討有效電漿頻率在三元結構中,我們發現有效電漿頻率隨著金屬層厚度的增大而增加,以上所有的分析是依據Abeles theory,這是個在處理多層介質系統中簡練確切的方法。

    A photonic crystal (PC) is an artificial medium with a periodic structure stacked by alternating two or more different materials with distinct refractive indices. It is known that there exist some photonic band gaps (PBGs) in a PC. Wide PBGs are usually needed in photonic applications.
    In this thesis, we investigate the band gap extension for a one-dimensional ternary PC, in which each period is made of a metal layer sandwiched by two dielectric layers. Two topics will be studied. First, it can be seen that the addition of metal layer will strongly enhance the PBG compared to that without metal layer, i.e., the dielectric-dielectric photonic crystal (DDPC).
    Next, we investigate the effective plasma frequency for such a ternary MDPC. We find that the effective plasma frequency increases with the increase in the thickness of the metal layer. All the above analyses are made based on the Abeles theory which is an elegant method in dealing with the multilayer system.

    Abstract i Acknowledgments ii Contents iii Chapter 1 Introduction 1-1 What Is a Photonic Crystal? 1 1-2 Motivation 2 1-3 Thesis Overview 3 Chapter 2 Theoretical Methods 2-1 Abeles Theory 4 2-2 A Homogeneous Dielectric Film 7 2-3 A Stratified Medium of Thin Dielectric Films 9 2-4 Transmittance and Reflectance 11 2-5 Periodic Structure Medium 13 Chapter 3 Band Gap Extension in a 1D Ternary MDPC 3-1 Introduction 16 3-2 Basic equations 16 3-3 Numerical results and discussion 19 3-4 Conclusion 25 Chapter 4 Low Cutoff Frequency in a 1D Ternary MDPC 4-1 Introduction 26 4-2 Numerical results and discussion 26 4-3 Conclusion 29 Chapter 5 Conclusion 30 References 31

    [1] J. W. Strutt, Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Phil. Mag., S.5, Vol. 24, 145-159, 1887.
    [2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. Vol. 58, 2059-2062, 1987.
    [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. Vol. 58, 2486-2488, 1987.
    [4] J. D. Jounnaopoulos, R.D. Meade and J. N. Winn, Photonic Crystals-Molding the Flow of Light, 1995, http://ab-initio.mit.edu/book/.
    [5] F. Abeles, Ann. De Physique vol. 5, pp. 596-640 and 706-782, 1950.
    [6] Principles of Optics, Page. 54, by M. Born and E. Wolf, 7th Edition
    [7] Hsu, H.-T. and C.-J. Wu, “Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect,” Progress In Electromagnetics Research Letters, Vol. 9,101–107, 2009.
    [8] Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, “Omni- direction reflection in one dimensional photonic crystal,” Progress In Electromagnetics Research B, Vol. 7, 133–143, 2008.
    [9] Banerjee, A., “Binary number sequence multilayer structure based on refractometric optical sensing element,” Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17–18,2439–2449, 2008.
    [10] Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett., Vol. 80, 4291–4293, 2002.
    [11] Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopou- los, and L. E. Thomas, “A dielectric omnidirectional reflector,”Science, Vol. 282, 1679–1682, 1998.
    [12] Yablonovitch, E., “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059-2062,1987.
    [13] John, S., “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., Vol. 58, 2486–2489, 1987.
    [14] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
    [15] Sakoda, K., Optical Properties of Photonic Crystals, Springer- Verlag, Berlin, 2001.
    [16] Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutger
    University, 2008, www.ece.rutgers.edu/orfanidi/ewa.
    [17] Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, “Enhancement of bandwidth in a chirped quarter-wave dielectric mirror,” Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437–447, 2009.
    [18] Wu, C.-J., B.-H. Chu, and M.-T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129–138,2009.
    [19] Wu, C.-J., Y.-N. Rao, and W.-H. Han, “Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal,” Progress In Electromagnetics Research, PIER 100, 27–36, 2010.
    [20] Li, H., H. Chen, and X. Qiu, “Bandgap extension of disordered
    1D binary photonic crystals,” Physica B, Vol. 279, 164–167, 2000.
    [21] Tolmachev, V. A., T. S. Perova, J. A. Pilyugina, and R. A. Moore, “Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si,” Optics Comm., Vol. 259, 104–106, 2006.
    [22] Qi, L., Z. Yang, X. Gao, F. Lan, Z. Shi, and Z. Liang, “Bandgap extension of disordered one-dimensional metallic-dielectric photonic crystals,” IEEE International Vacuum Electronics Conference, IVEC, 158–159, 2008.
    [23] Drude, Paul (1900). "Zur Elektronentheorie der metalle". Annalen der Physik] 306 (3): 566. doi:10.1002/andp.19003060312
    [24] Awasthi, S. K. and S. P. Ojha, “Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material,” Progress In Electromagnetics Research M, Vol. 4, 117–132, 2008
    [25] Banerjee, A., “Enhanced temperature sensing by using one- dimensional ternary photonic band gap structures,” Progress In Electromagnetics Research Letters, Vol. 11, 129–137, 2009.
    [26] Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [27] Marquez-Islas, R., B. Flores-Desirena, and F. P´erez-Rodr´ıguez, “Exciton polaritons in one-dimensional metal-semiconductor photonic crystal,” J. Nanosci. Nanotechnol., Vol. 8, 6584–6588, 2008.
    [28] Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, New Jersey, 2008.
    [29] Awasthi, S. K. and S. P. Ojha, “Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material,” Progress In Electromagnetics Research M, Vol. 4, 117–132, 2008
    [30] Born, M. and E. Wolf, Principles of Optics, Cambridge, London,1999.
    [31] Wu, C.-J., Y.-H. Chung, and B.-J. Syu, “Band Gap Extension In One-Dimensional In Ternary Mental-Dielectric Potonic Crystal,” Progress In Electromagnetics Research, PIER 100, 27–36, 2010.

    無法下載圖示 本全文未授權公開
    QR CODE