研究生: |
姚有徽 Io, Iao-Fai |
---|---|
論文名稱: |
一維non-Hermitian 拓樸模型 1D non-Hermitian topological model |
指導教授: |
高賢忠
Kao, Hsien-Chung |
口試委員: |
高賢忠
Kao, Hsien-Chung 游至仕 You, Jhih-Shih 謝長澤 Hsieh, Chang-Tse |
口試日期: | 2022/06/22 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | SSH Model 、bulk-edge correspondence 、Non-Hermitian 、Exceptional point |
英文關鍵詞: | SSH Model, bulk-edge correspondence, Non-Hermitian, Exceptional point |
研究方法: | 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200825 |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:36 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先介紹在一維拓樸絕緣體常討論的Su-Schrieffer-Heeger (SSH) model以及其推廣的模型,我們可以用bulk-edge correspondence去預測拓樸系統中邊界態數目。接下來將上述的模型推廣到non-Hermitian (NH)的形式,我們發現在NH系統中存在skin effect以及exceptional point,這些是當系統為Hermitian時不具有的性質。我們利用解析解計算研究exceptional points (EPs)在不同的模型下出現的條件,並了解其性質。
In this thesis we will introduce the Su-Schrieffer-Heeger (SSH) model, which is a prototype of one dimension topological insulator and its extended versions. It is known that bulk-edge correspondence may be used to predict the number of edge state on the boundary of a topological system. Next we extended these models to non-Hermitian (NH) Form, we found that in a NH system there exists skin effect and exceptional points which cannot be found in a Hermitian system. We use analytical calculation to find the condition of exceptional points (EPs) in different models, and study their property.
[1] János K. Asbóth, László Oroszlány and András Pályi, “A Short Course on triviical Insulators: Band-structure topology and edge states in one and two dimensions,” arXiv e-prints, page arXiv:1509.02295, Sep 2015.
[2] 陳韋錫,“Kitaev model and topological insulator” 碩士論文,國立臺灣師範大學物理學系,2015
[3] 陳柏宏,“Two-dimensional extended Su-Schrieffer-Heeger model” 碩士論文,國立臺灣師範大學物理學系,2018
[4] 陳漢庭,“Zak phase and winding number” 碩士論文,國立臺灣大學物理學系,2019
[5] 張家勳,“The Topology and classification of the 2D SSH model” 碩士論文,國立臺灣師範大學物理學系,2020
[6] Han-Ting Chen, Chia-Hsun Chang, and Hsien-Chung Kao, “Connection between the winding number and the Chern number,” Chinese Journal Physics, 72,50-68, (2021)
[7] Ken-Ichiro Imura and Yositake Takane, “Generalized bulk-edge correspondence for non-Hermitian topological systems,” Phys.Rev. B 100, 165430, Jun 2019
[8] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst, “Exceptional Topology of Non-Hermitian Systems,” Rev. Mod. Phys. 93, 015005, Feb 2021
[9] T.-Y. Li, J.-Z. Sun, Y.-S. Zhang, and W. Yi, “Non-Bloch quench dynamics,” Phys. Rev. Research 3, 023022, Apr 2021
[10] R. Wang, X. Z. Zhang and Z. Song, “Dynamical topological invariant for non-Hermitian Rice-Mele model,” Phys. Rev. A 98, 042120, Apr 2018
[11] Kazuki Yokomizo, and Shuichi Murakami, “Non-Bloch Band Theory of Non-Hermitian Systems,” Phys. Rev. Lett. 123, 066404, Aug 2019
[12] Shuai Li, Min Liu, Fuli Li, and Bo Liu, “Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model,” Nov 2020
[13] C. Yuce , “Topological states at exceptional points,” Phys. Lett. A 383 2567, Jun 2019
[14] J. Holler, N. Read, and J.G.E. Harris, “Non-Hermitian adiabatic transport in spaces of exceptional points” Phys. Rev. A 102, 032216, Sep 2020
[15] Yuto Ashida, Zongping Gong, and Masahito Ueda, “Non-Hermitian Physics,” Advances in Physics 69, 3 , Jan 2020
[16] X.-R. Wang, C.-X. Guo, and S.-P. Kou, “Defective Edge States and Anomalous Bulk-Boundary Correspondence in non-Hermitian Topological Systems,” Dec 2019