簡易檢索 / 詳目顯示

研究生: 奚子泰
Hsi, Tzu-Tai
論文名稱: 台灣區域未來降雨推估的統計降尺度穩定性研究
The study of statistical downscaling stationarity for future precipitation projection over Taiwan
指導教授: 陳正達
Chen, Cheng-Ta
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 統計降尺度極端降雨統計降尺度穩定性
DOI URL: http://doi.org/10.6345/NTNU202000017
論文種類: 學術論文
相關次數: 點閱:331下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前CMIP5(Coupled Model Intercomparison Project Phase 5)所使用的氣候模式其空間解析度對於區域性的地區或國家(如台灣)在評估未來氣候變遷的影響時仍有所不足,此時為了克服氣候模式其解析度較低的限制,降尺度方法的運用便成為研究區域氣候的必要手段。
    統計降尺度方法因其簡便且計算的需求相對較少,因此此方法已廣泛應用於全球各個區域的氣候研究上且行之有年。而統計降尺度方法在應用於未來氣候推估的降尺度時,其前提皆是假設過去(或現今)資料所建立的統計關係到未來時仍是穩定的;然而,近年來氣候變遷日趨嚴重,已有人開始質疑此無法驗證(在無未來的觀測資料情況下)的前提假設在未來是否仍成立。因此本研究採用"理想模式"("perfect model")此實驗架構利用高解析度的模式資料(動力降尺度資料)代替原本降尺度中所使用的觀測資料(因模式資料有模擬未來的部分),以驗證誤差修正氣候特徵法(Bias corrected Climate Imprint,簡稱BCCI)、誤差修正建構類比法(Bias corrected Constructed Analogues,簡稱BCCA)和誤差修正建構類比兼分位映射法(BCCA with quantile mapping reordering,簡稱BCCAQ)此三種統計降尺度方法在應用於未來的降尺度時能否遵守上述的前提假設,並比較不同統計降尺度方法其結果在現在和未來時期的表現,以及在這兩個時期表現的穩定性。
    研究結果顯示,BCCA此降尺度方法降尺度後的日降雨結果在強度上皆有低估的情況,BCCI和BCCAQ的結果在強度和極端降雨指標(r1mm、rx1day、rx5day)的表現上則與原始高解析度的模式資料較相近;至於統計穩定性的評估是以平均絕對誤差的比值(未來/現在)是否大於1而定,大於1即表示統計降尺度方法在應用於未來的降尺度時,其誤差會比應用於現在時期要來的大,此也代表違反了上述的前提假設。而本研究所驗證的三種統計降尺度方法(BCCI、BCCA、BCCAQ)其比值皆大於1,其中BCCA最大,其次為BCCAQ,BCCI則最小,此也表示BCCA的統計穩定性表現較差,BCCI則表現較佳。

    The spatial resolution of the climate models currently used by CMIP5 is still insufficient for regional regions or countries (such as Taiwan) in assessing the impact of future climate change. At this time, in order to overcome the limitation of the lower resolution of the climate models, the application of the downscaling method has become a necessary approach for studying regional climate.
    The statistical downscaling method is simple and requires relatively fewer computing resources. Therefore, this method has been widely used in climate research in various regions of the world for many years. The statistical downscaling method when applied to the downscaling of future climate projections, assumes that the statistical relationships established by past (or present) data will remain stable in the future. However, in recent years, climate change has become increasingly serious, and some people have begun to question whether this premise assumption that can’t be verified (in the absence of future observations) is still valid in the future. Therefore, this study uses the "perfect model" experimental design, this experimental design used high-resolution model data (dynamic downscaling data) instead of observation data in downscaling (because the model can simulate the future part) to verify whether bias corrected climate imprint (BCCI), bias corrected constructed analogues (BCCA), and bias corrected constructed analogues with quantile mapping reordering (BCCAQ) this three statistical downscaling methods can comply with the above that premise assumption when applyed to the future projections downscaling and compare the performance of different statistical downscaling methods in the present and future periods and the stability performance in these two periods.
    The results of this study show that the BCCA method underestimates in intensity on its daily precipitation results. By contrast, the daily precipitation results of BCCI and BCCAQ are similar to the original high-resolution model data in terms of intensity and extreme precipitation indices. As for the evaluation of statistical stability, it depends on whether the ratio of the mean absolute error (future divided by present) is greater than 1. If the ratio greater than 1 indicates that when the statistical downscaling method is applied to future period, its error will be greater than that applied in the present period, which also represents a violation of the above premise assumption. The three statistical downscaling methods (BCCI, BCCA, BCCAQ) validated by this study all have ratios greater than 1, among which BCCA is the largest, followed by BCCAQ, and BCCI is the smallest. This also means that BCCA performed poorly on statistical stability, and BCCI performed better.

    致謝 I 摘要 II Abstract IV 目錄 VI 圖表目錄 VIII 第一章 前言 1 第二章 資料介紹 8 2.1高解析度模式資料 8 2.2低解析度模式資料 9 第三章 研究架構及方法 11 3.1研究架構 11 3.2統計降尺度方法 13 3.2.1氣候特徵法(Climate imprint) 13 3.2.2誤差校正氣候特徵法(Bias-correction and climate imprint) 13 3.2.3建構類比法(Constructed analogues) 14 3.2.4誤差校正建構類比法(Bias-correction and constructed analogues) 14 3.2.5誤差校正建構類比兼分位映射法(BCCA with quantile mapping reordering) 15 第四章 降尺度後之結果分析 16 4.1空間型態相關性之分析 17 4.2平均絕對誤差之分析 25 4.3降雨值的強度與分布之分析 37 4.4時間序列相關係數之分析 46 第五章 極端降雨指標探討 51 5.1年期間雨日日數 51 5.2年最大單日降雨量 56 5.3年最大五日累積降雨量 61 第六章 結論 66 參考文獻 71 附錄 76

    戴俐卉、洪景山、莊秉潔、蔡徵霖與倪佩貞,2008:WRF模式臺灣地區土地利用類型之更新與個案研究。大氣科學,36,43-62。
    Barnston, A.G., M.H. Glantz, and Y. He, 1999: Predictive Skill of Statistical and Dynamical Climate Models in SST Forecasts during the 1997–98 El Niño Episode and the 1998 La Niña Onset. Bulletin of the American Meteorological Society,80,217–244,https://doi.org/10.1175/1520-0477(1999)080<0217:PSOSAD>2.0.CO;2
    Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation Simulations Using WRF as a Nested Regional Climate Model. Journal of Applied Meteorology and Climatology, 48, 2152–2159.
    Cannon, A.J., S.R. Sobie, and Murdock T.Q., 2015: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?. Journal of Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1
    Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. Thornton, 2013: Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophysical Research Letters , 38, L11804.
    Chu, J.-L., H. Kang, C. –Y. Tam, C. –K. Park, and C. –T. Chen, 2008: Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling. Journal of Geophysical Research: Atmospheres, 113, D12118, https://doi.org/10.1029/2007JD009424
    Dixon, K.W., Lanzante, J.R., Nath, M.J. et al.,2016: Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?. Climatic Change, 135: 395-408, https://doi.org/10.1007/s10584-016-1598-0
    Dockrill, P.,2019: It’s Official: Atmospheric CO2 Just Exceeded 415 ppm For The First Time in Human History. Science Alert
    Fowler, H.J., Blenkinsop, S., Tebaldi, C.,2007: Linking climate change
    modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12):1547–1578
    Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. Rasmussen, 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resource Research, 50, 7167–7186, doi:https://doi.org/10.1002/2014WR015559.
    Hertig, E. and Jacobeit, J., 2013: A novel approach to statistical downscaling
    considering nonstationarities: application to daily precipitation in
    the Mediterranean area. Journal of Geophysical Research: Atmospheres, 118(2):520–533
    Hidalgo, H. G., Dettinger, M. D. and Cayan, D. C., 2008: Downscaling With Constructed Analogues: Daily Precipitation and Temperature Fields Over The United States. California Energy Commission,PIER Energy-Related Environmental Research. CEC-500-2007-123.
    Hiebert et al., 2018: ClimDown: Climate Downscaling in R. Journal of Open Source Software, 3(22), 360. https://doi.org/10.21105/joss.003601
    Hunter, R.D. and R.K. Meentemeyer, 2005: Climatologically Aided Mapping of Daily Precipitation and Temperature. Journal of Applied Meteorology, 44, 1501–1510, https://doi.org/10.1175/JAM2295.1
    Lanzante, J.R., K.W. Dixon, M.J. Nath, C.E. Whitlock, and D. Adams-Smith, 2018: Some Pitfalls in Statistical Downscaling of Future Climate. Bulletin of American Meteorological Society, 99, 791–803, https://doi.org/10.1175/BAMS-D-17-0046.1
    Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong, 2012: Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 25-64
    Levi, B., Bridget, L., Edwin, P. et al.,2013: Downscaled CMIP3 and CMIP5 Climate Projections.
    Maraun, D., et al., 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Reviews of Geophysics, 48, RG3003, doi:10.1029/2009RG000314.
    ─, 2013: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. Journal of Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1
    Maurer, E. P. and Hidalgo, H. G., 2008: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrology and Earth System Science, 12, 551-563, https://doi.org/10.5194/hess-12-551-2008.
    Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. Journal of the Meteorological Society of Japan, 90A, 233-258
    Murdock, T.Q., Sobie, S.R. and James,M.H.,2014: Statistical downscaling of future climate projections for North America. Pacific Climate Impacts Consortium. KM040-131148/A
    Salvi, K., Ghosh, S. and Ganguly, A.R., 2016: Credibility of statistical downscaling
    under nonstationary climate. Climate Dynamics, 46(5): 1991–2023. https://doi.org/10.1007/s00382-015-2688-9.
    Sobie, S.R. and T.Q. Murdock, 2017: High-Resolution Statistical Downscaling in Southwestern British Columbia. Journal of Applied Meteorology Climatology, 56, 1625–1641, https://doi.org/10.1175/JAMC-D-16-0287.1
    Teutschbein, C., Seibert, J. 2013: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrology Earth System Sciences 17(12): 5061–5077. https://doi.org/10.5194/hess-17-5061-2013.
    Themeβl, M.J., Gobiet, A. and Leuprecht,A., 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology, 31, 1530-1544, https://doi.org/10.1002/joc.2168
    Vrac, M., Stein, M.L., Hayhoe, K., Liang, X.Z., 2007: A general method for
    validating statistical downscaling methods under future climate
    change. Geophysical Research Letters, 34(18):L18701
    Volosciuk, C., Maraun, D., Vrac, M., Widmann M., 2017: A combined
    statistical bias correction and stochastic downscaling method for
    precipitation. Hydrology Earth System Sciences, 21(3): 1693–1719. https://doi
    .org/10.5194/hess-21-1693-2017.
    von Storch, H., E. Zorita, and U. Cubasch, 1993: Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime. Journal of Climate, 6, 1161–1171, https://doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2
    Wang, J. and X. Zhang, 2008: Downscaling and Projection of Winter Extreme Daily Precipitation over North America. Journal of Climate, 21, 923–937, https://doi.org/10.1175/2007JCLI1671.1
    Wang, Y., Sivandran, G. and Bielicki, J. M., 2018: The stationarity of two statistical downscaling methods for precipitation under different choices of cross‐validation periods. International Journal of Climatology, 38: e330-e348. doi:10.1002/joc.5375
    Washington, W. M., Weatherly, J.W., Meehl, G.A. et al., 2000: Parallel Climate Model (PCM) control and transient simulations. Climate Dynamics, 16, 755-774, doi:10.1007/s003820000079.
    Werner, A. T. and Cannon, A. J., 2016: Hydrologic extremes–an intercomparison of multiple gridded statistical downscaling methods, Hydrology and Earth System Science, 20, 1483-1508, https://doi.org/10.5194/hess-20-1483-2016,.
    Wilby R.L. and Wigley T.M.L., 1997: Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography, 21,530–548. doi:10.1177/030913339702100403
    ─,and Wigley T.M.L., 2000: Precipitation predictors for downscaling: observed and general circulation model relationships. Journal of Climatology, 20(6):641–661
    Wood, A. W., Leung, L.R., Sridhar, V. et al., 2004: Hydrologic
    implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1):189–216
    ─, Maurer, E. P., Kumar A., Lettenmaier D. P., 2002: Long-range
    experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research: Atmospheres, 107:D20, https://doi.org/10.1029/2001JD000659
    Yang, Y., Tang, J., Xiong, Z. et al., 2018: An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: present climate evaluations. Climate Dynamics, https://doi.org/10.1007/s00382-019-04809-x
    ─, Tang, J., Xiong, Z. et al., 2018: An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: future climate projections. Climate Dynamics, 52: 6749. https://doi.org/10.1007/s00382-018-4543-2

    下載圖示
    QR CODE