研究生: |
黃筱粧 Huang, Xiao-Zhuang |
---|---|
論文名稱: |
應用氣相層析儀/哨子技術探討酸性溶液對種子萌發及呼吸作用的影響 The use of a gas chromatography/Milli-whistle technique for the on-line monitoring simulated acid solution effect on Mung bean germination and respiration |
指導教授: | 林震煌 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 微型發音哨 、氣相層析儀 、LabVIEW 、呼吸作用 、種子萌發 |
英文關鍵詞: | seed respiration |
DOI URL: | https://doi.org/10.6345/NTNU202202534 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氣相層析/聲波感測方式,長時間對綠豆種子發芽過程中的呼吸商 (每分鐘氧消耗量和二氧化碳產生量之比;Respiratory Quotient)進行即時偵 測。藉由計算呼吸作用反應的速率常數與溫度之間的關係式,依照 Arrhenius 方程式作圖,成功獲得不同溫度及不同 pH 之下的反應活化能。 氣相層析/聲波感測法是利用串接在氣相層析管柱尾端的微哨感測器,當種子 發芽過程產生的氧氣與二氧化碳,經氣相層析管柱分離後,會在哨子端產生不 同頻率的聲波。經快速傅立葉轉換後,可以得到頻率即時的層析圖譜。呼吸商則可以用來了解各種營養基底被利用的比例。呼吸商為 1 時, 能量主要由碳水化合物供給。本實驗先配製不同p值的溶液(pH 值:3~7),在暗室中進行不同溫度(溫 度:25~30 度)的綠豆呼吸作用反應,並同步長時間測量呼吸商的數值(每 5 分 鐘測量一次,連續 12 小時的即時線上記錄監測)。實驗結果發現,酸性越強的溶液中,種子的呼吸速率也隨之下降。在中性的環境下(pH, 7.0),萌芽前 的 5 個小時內,呼吸商的數值都非常接近 1。這表示此階段主要是以碳水化合物作為呼吸作用的養份來源。而隨後的 8 個小時內,呼吸商逐漸降至 0.6以下。這表示養份的利用將逐漸轉成為其他成分。此外,種子在酸性溶液中,碳水化合物的利用容易受到抑制。但是,如果將
II
溫度增加的話,葡萄糖被抑制使用的情況可以得到舒減。由上述的實驗結果,依照 Arrhenius 方程式作圖,可以得到不同條件下的反應活化能。在溶液的 pH 值為 3, 4, 5, 6, 7 的情況下,反應 活化能分別為17.5834,17.0047,16.2955,11.5170,11.2704 kJ mol-1。尤其當 pH=3 時,活化能為 17.5834,明顯大於其他 pH 值之下的活化能,清楚說明了強酸的情況下需要較大活化能才能維持種子萌發的生理機能。 利用本實驗裝置可以即時分析種子發芽時所需要的最佳 pH 環境及最佳溫度。本研究所開發的裝置,非常容易用來探知呼吸最緩慢的條件。日後可應用在蔬 果食品保存或魚鮮肉類輸送過程,所需節能省碳等的最佳條件。
In this study, the dynamic response of seed germination and respiration of Mung bean to simulated acid rain stress were investigated. The sterilized seeds were dipped in simulated acid rain solution with pH 7, 6, 5 ,4 ,3 for 12 hours and temperature effect was also considered. To evaluate the respiration rate during the seed germination, a gas chromatography/milli-whistle device was used to on-line monitor the production of oxygen and carbon dioxide. The milli-whistle was connected to the outlet of a GC capillary, and when the analyte gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The online data obtained for frequency vs. retention time can be recorded after a fast Fourier transform. With the decrement of pH of acid rain solution, the respiration rate of Mung bean was decreased, The effect of simulated acid rain on the germinated energy in pH value 7 to 3 the activated energy was 17.5834kJ mol-1, 17.0047kJ mol-1, 16.2955kJ mol-1, 11.5170kJ mol-1 and 11.2704kJ mol-1 respectively. Simulation of acid rain could restrain the germination of seed in some degree and the restraining effect strengthened with the rise of acid rain degree.
[1] Yamamoto et al.,Scientia Horticulturae. 2016, 144–151
[2] Bladé, C.; Vallejo, V.R., Ecol. Manage. 2008, 255, 2362–2372.
[3] S. Kubala et al., Plant Science, 2015, 231, 94–113 95
[4] Askari, S.; Uddin, F.; Azmat, R.Pak. J. Bot.2007, 39, 1089–1096.
[5] Y. Lu et al., European Journal of Pharmacology, 2016, R.P.
[6] R.P. Jacoby et al., Journal of Proteomics. 2016,143,36–44
[7] R.P. Jacoby et al., Journal of Proteomics. 2016,143,36–44
[8] L. Wang et al., Food Chemistry. 2017, 234, 314–322
[9] M. Kukumägi et al., Agricultural and Forest Meteorology. 2014, 194,167-174
[10] I.B. Baoua et al., Journal of Stored Products Research. 2014, 58, 20-28
I. Afzal et al., Journal of Stored Products Research. 2017, 72, 49-53
[11] C. Ju et al., Environmental Pollution. 2016, 208, 811-820
[12] Y. Li et al., Plant Physiology and Biochemistry. 2017, 114, 72-87
[13] L. Liu et al., Agricultural and Forest Meteorology. 2015, 207, 38–47
[14] S. Pond, S., Cameron. 2003, 3, 1379–1388
[15] Z. Xu et al., Agriculture, Ecosystems and Environment, 2006, 171,105–112
[16] S. Peraudeau et al., Field Crops Research, 2015, 171, 67–78
[17] P. Pramanik, P.J. Kim, Soil Biology & Biochemistry, 2013, 58, 159-162
[18] Hua. Fang et al., Journal of Environmental Sciences. 2012, 24(7) 1259–1269
[19] L. Sun Koranski, D. S.; S. R., Laffe.Hort. Rev. 1990, 13, 131-191.
[20] et al., Environmental Pollution. 2017, 226, 426-434 -427
[21] S. Mohanty et al., Ecological Engineering, 2017, 104, 80–98
[22] N.E. Korres et al., Water resources and rural development. 2017,9, 12- 27
[23] W. Xue et al., Journal of Plant Physiology, 2016, 193, 26–36
[24] Cui Yue-feng et al., Journal of Integrative Agriculture 2017, 16(5): 1064–1074
[25] M.I. Khalil, K. Inubushi ,Soil Biology & Biochemistry. 2007, 39, 2675–2681
[26] X. Wang et al., Agricultural and Forest Meteorology, 2017, 23, 31–11
[27] Birewar, B.R., Post-harvest Technology of Pulses, Pulse Production e Constraints and Opportunities. Oxford and IBH Publishing Co., New Delhi, India. 1984, p.425 - p.438.
[28] Y. Fang et al., Europ. J. Agronomy, 2010, 33, 257–266
[29] E. Suárez-Vidal et al., Environmental and Experimental Botany. 2017, 134,45–53
[30] Askari, S., Uddin, F., Azmat, R., Biosorption of Hg. I. Significant. Pak. J. Bot. 2007,39, 1089–1096.
[31] Ecological Indicators. 2017, 80, 186–195
[32] K.T. Seidu et al., Food Research International. 2015, 73, 130–134
[33] Aremu, M.O., Ogunlade, I., Nigeria. Pakistan Journal of Nutrition. 2007, 65, 419–423
[34] M. Sheteiwy et al., Environmental and Experimental Botany 2017,137, 58–72
[35] Ellner, S.; J. Theor. Biol. 1986 123, 173–185.
[36] M.P. Gomes et al., Environmental Pollution. 2010. 220, 452-459
[37] Lin, C. -H.; Lin, C. -H.; Li, Y. -S.; He, Y. -S., Anal. Chem. 2010, 82, 7467-7471.
[38] He, Y. -S.; Chen, K. -F.; Lin, C. -H.; Lin, M. -T.; Chen, C. -C.; Lin, C. -H., Anal. Chem. 2013, 85, 3303-3308.
[39] Lin, C. -H.; He, Y. -S.; Lin, C. -H.; Fan, G. -T.; Chen, H. -K., Anal. Sci. 2014, 30, 183-191.
[40] Fletcher, N. H., J. Acoust. Soc. Am. 1974, 56
[41] Elder, S. A., J. Acoust. Soc. Am. 1978, 64, 1721-1723,
[42] Fletcher, N. H., J. Acoust. Soc. Am. 1974, 56
[43] Coltman, J. W., J. Acoust. Soc. Am. 1976, 3, 725-733.
[44] Z. Xu et al.; Agriculture, Ecosystems and Environment. 2006, 115, 105–112
[45] Baskin, C.; C., Baskin, J.M., Academic Press, New York. 1998..
[46] Taiz, L.; Zeiger,E., PlantPhysiology.MA:bySinauerAssociates,Inc.1998
[47] S. Luo et al., Scientia Horticulturae. 2017, 221, 73–82
[48] Costa, M.L.; Civello, P.M.; Chaves, A.R., Martinez, G.A. 2005. E
[49] Doehlert, D.C.; Kuo, T.M.; Felker, F.C., Plant Physiol. 1988, 86, 1013–1019
[50] Donald Voet; Judith G. Voet, Biochemistry 4th Edition. 2010, p.797~p.831
[51] LatiesG.G., AnnRevPlantPhysiol.1982
[52] Donald Voet; Judith G. Voet, Biochemistry 4th Edition. 2010, p.798
[53] Delele, M.A.; Nicolai, B.M. Storage of respiratory produce. 2015, European patent.
[54] Telugu Academi, Botany text book. 2007, p.226~p.274
[55] Taiz, L.; Zeiger,E.,PlantPhysiology.MA:bySinauerAssociates,Inc.1998
[56] Bain, J. M.; Mercer, F. V. , L. Aust. J. Biol. Sci.1966, 19, 69-84.
[57] Gasser, F.; Eppler, T.; Naunheim, W.; Gabioud, S.; Hoehn, E., Acta Hortic. 2008, 796, 69–76.
[58] Bergholz, K.; Jeltsch, F.; Weiss, L.; Pottek, J.; Geißler, K.; Ristow, M., Oikos. 2015, 124, 1547–1554.
[59] Bilir, N.; Prescher, F.; Lindgren, D.; Kroon, J., New For.2008, 36, 187–199
[60] "Bladé, C., Vallejo, V.R., 2008. Seed mass effects on performance of Pinus halepensis
[61] Mill. For. Ecol. Manage. 2007 255, 2362–2372.
[62] Atherton, J. G. ; Farooque, A. M., Plant. Physiol.1983, 79, 49-67.
[63] Y. Xu et al., Chemical Engineering Journal. 2016, 299201–208
[64] D. M.; Dresch et al., American Journal of Plant Sciences. 2014, 5, 2555-2565
[65] D. Jimenez-Cordero; F. Heras; N. Alonso-Morales; M.A. Gilarranz, J.J. Rodriguez, Biomass Bioenergy. 2013, 299, 123–132.
[66] Sharma SK. Indian J Plant Physiol. 1997, 2, 171–3.
[67] Kenneth Connors, Chemical Kinetics. 1990, VCH Publishers
[68] I. Kranner; L. Colville, Environmental and Experimental Botany. 2011, 72 ,93–105
[69] M. Nishiyama et al., Chemical Physics Letters. 2009, 482, 332–336
[70] M. Nishiyama et al., Chemical Physics Letters. 2009, 482, 352–329
[71] V. Aquilanti et al., Chemical Physics Letters. 2010, 498, 209–213
[72] Kang, -H.; Lee, W. -S.,J Plant Bio. 2001 , 44(3), 131-140
[73] Zeng, Q. -L.; Zhou, Q., Journal of Environment Science. 2004, 23, 1073-1076