簡易檢索 / 詳目顯示

研究生: 方彥傑
Fang, Yen-Chieh
論文名稱: 有位置校正及混合態功能之Ptychography光學同調繞射顯微術於標準解析度樣品之影像重建
Image reconstruction of Ptychographic coherent diffraction microscopy with position correction and mixed state capabilities for standard resolution samples
指導教授: 傅祖怡
Fu, Tsu-Yi
口試委員: 黃英碩
Hwang, Ing-Shouh
傅祖怡
Fu, Tsu-Yi
陳瑞山
Chen, Ruei-San
口試日期: 2023/06/29
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: ePIE演算法同調繞射顯微術位置校正混合態HIO演算法相位取回演算法Ptychographic
英文關鍵詞: Ptychographic, extend Ptychographic Iterative Engine, ePIE, HIO, Coherent Diffraction Microscopy, position correction, mixed state, Hybrid Input-Output, phase retrieval algorithm
研究方法: 實驗設計法準實驗設計法次級資料分析觀察研究
DOI URL: http://doi.org/10.6345/NTNU202300758
論文種類: 學術論文
相關次數: 點閱:95下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Ptychographic同調繞射顯微術 (Ptychographic Coherent Diffraction Microscopy, PCDM) 是一種較為新穎且可以不使用透鏡的顯微技術,現今,廣泛使用在PCDM的演算法是extend Ptychographic Iterative Engine (ePIE) 演算法,將X光、電子束和可見光做為發射源的成像系統已有利用ePIE重建影像。本論文建立一套氦氖雷射為發射源且發射源尺寸為可變的光學同調繞射 (Coherence Diffraction Imaging, CDI) 成像系統,並將位置校正 (position correction) 與混合態 (mixed state) 的功能加入ePIE演算法,對負片型標準解析度樣品與生物標本樣品進行觀察。具有位置校正與混合態功能的ePIE演算法成功重建兩種樣品的強度影像和相位影像,包含樣品形貌影像及發射源影像。但是在負片型標準解析度樣品中,較小發射源掃描較細條紋之高解析度區域時,ePIE無法順利重建影像,不過,發射源影像及其相位是可以被具有位置校正與混合態功能的ePIE演算法成功重建。未來,具有位置校正與混合態功能的ePIE演算法所重建之發射源相位,或許能與相位取回演算法 (Hybrid Input-Output, HIO) 結合,發展出功能更加完善的Ptychographic同調繞射顯微術。

    Ptychographic Coherent Diffraction Microscopy (PCDM) is a relatively novel microscopy technique that does not require the use of lenses. Currently, the widely used algorithm in PCDM is the extended Ptychographic Iterative Engine (ePIE) algorithm. Imaging systems utilizing X-rays, electron beams, and visible light as the illumination sources have been reconstructed using ePIE. In this paper, we establish an optical Coherence Diffraction Imaging (CDI) system with a helium-neon laser as the illumination source, where the source size is adjustable. We incorporate position correction and mixed state capabilities into the ePIE algorithm to observe both negative-tone standard resolution samples and biological specimens. The ePIE algorithm with position correction and mixed state successfully reconstructs intensity and phase images of both samples, including sample morphology and source images. However, in the case of the negative-tone standard resolution sample, when scanning the high-resolution region with finer fringes using a smaller illumination source, ePIE fails to reconstruct the image smoothly. Nonetheless, the source image and its phase can still be successfully reconstructed using the ePIE algorithm with position correction and mixed state capabilities. In the future, the phase of the reconstructed source using the ePIE algorithm with position correction and mixed state capabilities may be combined with the Hybrid Input-Output (HIO) algorithm for phase retrieval. This integration could lead to the development of a more advanced PCDM technique with enhanced functionality.

    摘要 i Abstract iii 致謝 i 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1 背景 1 1.2 同調繞射顯微鏡 (Coherent diffraction microscope, CDM) 2 1.3 同調繞射顯微術 (Coherence Diffraction Imaging, CDI) 3 1.4 動機 6 第二章 理論 8 2.1 繞射理論 8 2.2 同調性 (Coherence) 11 2.3 相位取回演算法 14 2.4 Fienup演算法 14 2.5 Ptychography 演算法 16 2.6 位置校正 (Position - Correction) 18 2.7 混合態 (Mixed - State) 18 第三章 實驗儀器 20 3.1 實驗儀器 20 3.2 光路架設 24 第四章 實驗步驟 26 4.1 雷射光型修正 26 4.2 雷射光源尺寸 27 4.3 曝光檢驗 28 4.4 影像校正與處理 29 4.4.1 Over sample rate 29 4.4.2 影像裁切與解析度計算 30 4.4.3 Binning 31 4.4.4 影像汙點 33 4.4.5 計算誤差 34 4.5 掃描影像 35 4.6 影像重建 36 4.6.1 CDI模擬 (ePIE) 37 4.6.2 CDI模擬 (ePIE with Position - Correction and mixed - state) 39 第五章 實驗結果與討論 40 5.1 掃描CDI (ePIE with PC & MS) 40 5.2 標準解析度樣品 (Negative 1951 USAF Test Targe) 41 5.2.1 掃描區域Group 2 43 5.2.2 掃描區域Group 4 5 7 45 5.2.3 掃描區域Group 5 48 5.2.4 掃描區域Group 6 7 51 5.3蝴蝶翅膀樣品 52 5.3.1 光源大小(Probe):216.95μm 53 5.3.2 光源大小(Probe):133.88μm 56 第六章 結論與未來展望 58 6.1 結論 58 6.2 未來展望 59 參考文獻 60

    F. Hüe et al, “Extended ptychography in the transmission electron microscope: possibilities and limitations”, Ultramicroscopy (2011).
    J. Miao, P. Charalambous, J. Kriz, D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens“, Nature 400, 342 (1999).
    U. Weierstall, Q. Chen, J.C.H. Spence, M.R. Howells, M. Isaacson, R.R. Panepucci, “Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation“, Ultramicroscopy 90, 171 (2002).
    J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L.A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities“, Science 300, 1419 (2003).
    J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L.A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities“, Science 300, 1419 (2003).
    S. Morishita, J. Yamasaki, K. Nakamura, T. Kato, N. Tanaka, “Diffractive imaging of the dumbbell structure in silicon by spherical-aberration corrected electron diffraction”, Appl. Phys. Lett. 93, 183103 (2008).
    W.J. Huang, J.M. Zuo, B. Jiang, K.W. Kwon, M. Shim, “sub-ångströmresolution diffractive imaging of single nanocrystals”, Nat. Phys. 5, 129 (2009).
    L.D. Caro, E. Carlino, G. Caputo, P.D. Cozzoli, C. Giannin, “Electron diffractive imaging of oxygen atoms in nanocrystals at sub- sub-ångström resolution”, Nat. Nanotechnol. 5, 360 (2010).
    O. Kamimura, Y. Maehara, T. Dobashi, K. Kobayashi, R. Kitaura, H. Shinohara, H. Shioya, K. Gohara, “Low voltage electron diffractive imaging of atomic structure in single-wall carbon nanotubes”, Appl. Phys. Lett. 98 174103 (2011).
    O. Kamimura, T. Dobashi, K. Kawahara, T. Abe, K. Gohar, “10-kV diffractive imaging using newly developed electron diffraction microscope”, Ultramicroscopy 110 130 (2010).
    M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden, J.M. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging”, Nature Commu. 3 730 (2012).
    L.N. Longchamp, T. Latychevskaia, C. Escher, H.W. Fink, “Graphene unit cell imaging by holographic coherent diffraction“, Phys. Rev. Lett.110 255501 (2013).
    J. C. H. Spence, U. Weierstall, M. Howells,“Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction”, Phil. Trans. R. Soc. Lond. A 360, 875 (2002)
    G. J. Yu, “Ptychographical coherent diffraction microscopy for extend periodic structure” (Unpublished master’s thesis), National Chiao Tung University, Hsinchu (2014).
    A. C. Hurst and J. M. Rodenburg, “ An optical demonstration of ptychographical imaging for focussed-probe illumination”, Journal of Physics: Conference Series 126, 012093 (2008)
    Martin Dierolf et al., “Coherent laser scanning diffraction microscopy”, Journal of Physics: Conference Series 186, 012052 (2009).
    Oliver Bunk et. al., “Influence of the overlap parameter on the convergence of the ptychographical iterative engine”, Ultramicroscopy 108, 481 (2008).
    Thibault, P., et al., Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy, 2009. 109(4): p. 338-343.
    Thibault, P., et al., High-resolution scanning x-ray diffraction microscopy. Science, 2008. 321(5887): p. 379-382.
    Humphry, M., et al., Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nature communications, 2012. 3: p. 730.
    Rodenburg, J., et al., Hard-x-ray lensless imaging of extended objects. Physical review letters, 2007. 98(3): p. 034801.
    C.Y. Lin, “Low-kilovolt Coherent Electron Diffraction Imaging Based on a Single-Atom Electron Source” (Unpublished doctoral dissertation), National Taiwan University, Taipei (2016).
    http://www.microbehunter.com/phase-contrast-vs-bright-field-microscopy/.
    J.C.H. Spence, U. Weierstall, M. Howells, “Coherence and sampling requirements for diffractive imaging”, Ultramicroscopy 101, 149 (2004)
    W. C. Huang, “Holographic Simulations and Reconstructions of Low energy Electron Point Projection Microscopy” (Unpublished master’s thesis), National Taiwan University, Taipei (2018).
    J. R. Fienup, T. R. Crimmins, and W. Holsztynski, “Reconstruction of the support of an object from the support of its autocorrelation” J. Opt. Soc.. 72, 5 (1982).
    R. Hegerl, W. Hoppe, “Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld”, Berichte der Bunsengesellschaft für physikalische Chemie. 74, 11, 1148 (1970)
    W. Hoppe, “ Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference”, Acta Crystallogr. A 25, 495 (1969)
    W. Hoppe, “Trace structure analysis, ptychography, phase tomography”, Ultramicroscopy 10, 187 (1982)
    H. Faulkner, J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm”, Physical review letters 93, 2, 023903 (2004)
    J. Rodenburg, H. Faulkner, “A phase retrieval algorithm for shifting Illumination”, Applied physics letters 85, 20, 4795 (2004)
    A.M. Maiden, M.J. Humphry, M.C. Sarahan, B. Kraus, J.M. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography”, Ultramicroscopy, 120 (2012), pp. 64-72
    Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).
    https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4338
    https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6277
    Rob Sumner, “Processing RAW Images in MATLAB”, Department of Electrical Engineering, UC Santa Cruz (2014).
    J. R. Fienup, “ Invariant error metrics for image reconstruction” , Appl. Opt. 36, 32, 10 (1997)

    下載圖示
    QR CODE