簡易檢索 / 詳目顯示

研究生: 杜冠樺
Kuan-Hua TU
論文名稱: 不同鞋底前足彎曲勁度對運動表現的影響
Effects of different forefoot bending stiffness on performance
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 蹠骨關節推蹬跳躍落地緩衝
英文關鍵詞: Metatarsophalangeal joint, push off, jump landing, cushion
論文種類: 學術論文
相關次數: 點閱:179下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:比較穿著不同鞋底前足彎曲勁度的運動鞋在走路、慢跑與快跑以及三種跳躍動作之下肢動力學、運動學以及肌肉活化特性的差異。方法:本實驗招募11名健康年輕男性,利用動作分析系統、測力板及表面肌電儀,擷取穿著不同鞋底前足彎曲勁度的運動鞋,在走路、慢跑、快跑、立定跳遠、連續小跳以及下墜跳的運動表現,並比較之間的差異。本研究是以重複量數二因子變異數分析,比較穿著三種彎曲勁度的運動鞋與三種速度的差異,並以單因子變異數分析比較三種彎曲勁度的運動鞋分別在三種跳躍動作下的差異,顯著水準皆設為α=.05。結果:在穿著不同鞋底前足彎曲勁度的運動鞋時,於三種速度下的水平力斜率,在走路時是較低彎曲勁度的運動鞋表現較好,而在慢跑與快跑時則是高彎曲勁度的運動鞋表現較好。且於下墜跳時的第一次著地最大瞬時斜率,低、高彎曲勁度的運動鞋會高於一般的運動鞋。並且會限制蹠骨關節的關節活動度。但於肌電活化特性方面則是沒有影響。結論:穿著彎曲勁度的運動鞋,對下肢關節的運動學會造成影響,並且可以提升推蹬的效率,以及降低跳躍落地時的能量吸收。

    Purpose: To compare the differences of the lower extremity kinematics, dynamics and muscle activation characteristics when wearing different forefoot bending stiffness shoes. Methods: Eleven healthy young male participants were asked to perform walk, jog, run, and three jump activities with different forefoot bending stiffness shoes. Motion analysis system, force plates and surface EMG were used for data collection. Repeated measure two-way ANOVA was used to analyze the effects of three different forefoot bending stiffness shoes with three speeds (walk, jog and run). Moreover, one-way ANOVA was used to analyze the effect of three different forefoot bending stiffness shoes in three jumping activities, respectively. The significant level was set at α=.05. Result: In walking condition, the slope of horizontal ground reaction force was significantly reduced when wearing low bending stiffness shoe. In jogging and running conditions, the slope of horizontal ground reaction force was significantly reduced when wearing high bending stiffness shoe. Furthermore, the loading rate of vertical landing ground reaction force of drop jump was significantly higher wile wearing stiffness shoes. The meatatsophalangeal joint motion was also changed with different shoes. And there were no significant differences in EMG between all conditions. Conclusion: Wearing the forefoot bending stiffness shoes can influence the lower extremity kinematics, enhance the push-off efficiency, and also absorb the landing impact.

    中文摘要....................................................i 英文摘要...................................................ii 致謝詞.....................................................iv 目次.......................................................v 表次....................................................viii 圖次......................................................ix 第壹章緒論..................................................1 一、研究背景.................................................1 二、研究問題.................................................6 三、研究目的.................................................6 四、研究假設.................................................6 五、研究範圍與限制............................................7 六、名詞操作型定義............................................7 七、研究的重要性.............................................11 第貳章文獻探討..............................................12 一、蹠骨關節與運動表現........................................12 二、鞋子彎曲勁度與運動表現....................................15 三、跑步的效率..............................................18 四、文獻總結................................................20 第參章材料與方法.............................................21 一、實驗對象................................................21 二、實驗時間與地點...........................................21 三、實驗儀器................................................21 四、實驗設計................................................22 五、實驗流程圖..............................................27 六、資料處理與分析...........................................28 七、統計分析................................................32 八、材料測試................................................33 第肆章結果.................................................34 一、三種不同彎曲勁度運動鞋的材料測試之結果.......................34 二、三種速度的動力學結果......................................35 三、三種速度的運動學結果......................................41 四、三種速度的肌肉活化訊號之結果................................48 五、三種跳躍的動力學結果......................................50 六、三種跳躍的運動學結果......................................55 七、三種跳躍的肌肉活化訊號之結果................................67 第伍章討論.................................................70 一、材料對彎曲勁度的影響......................................70 二、鞋底前足彎曲勁度對動力學的影響..............................71 三、鞋底前足彎曲勁度對運動學的影響..............................72 四、鞋底前足彎曲勁度對肌肉活化的影響............................75 五、鞋底前足彎曲勁度對推蹬表現的影響............................76 六、鞋底前足彎曲勁度對跳躍落地的著地策略之影響....................77 七、結論...................................................77 八、建議...................................................78 引用文獻...................................................79 表次 表3-1 受試者基本資料.........................................21 表3-2 表面肌電黏貼位置.......................................25 表3-3 內建模組Plug-in-Gait下肢反光點位置......................25 表3-4 足部增加的點..........................................26 表4-3.1 推蹬期踝關節角速度...................................45 表4-3.2 推蹬期膝關節角速度...................................48 表4-5.1 最大努力立定跳遠之動力學結果...........................50 表4-5.2 連續小跳之動力學結果..................................52 表4-5.3 下墜跳之動力學結果...................................53 表4-6.1 最大努力立定跳遠的運動學結果...........................56 表4-6.2 連續小跳的運動學結果..................................60 表4-6.3 下墜跳的運動學結果...................................64 表4-7.1 三種跳躍的肌肉活化訊號之結果...........................67 圖次 圖1-1 先前實驗用鞋...........................................4 圖1-2 不同彎曲勁度材料的位置...................................8 圖1-3 人體步態週期...........................................9 圖2-1 足部定位點............................................14 圖2-2 足底筋膜的絞盤機制.....................................15 圖3-1 肌電黏貼位置..........................................22 圖3-2 實驗環境佈置圖.........................................24 圖3-3 實驗流程示意圖.........................................27 圖3-4 步態週期-推蹬期........................................28 圖3-5 行走的三軸地面反作用力之時間-力量曲線......................29 圖3-6 慢跑的三軸地面反作用力之時間-力量曲線......................29 圖3-7 快跑的三軸地面反作用力之時間-力量曲線......................30 圖3-8 立定跳遠的三軸地面反作用力之時間-力量曲線..................30 圖3-9 下墜跳的三軸地面反作用力之時間-力量曲線....................31 圖3-10 連續小跳5下的三軸地面反作用力之時間-力量曲線...............31 圖4-1.1 三種彎曲勁度運動鞋測力板之材料測試......................34 圖4-1.2 三種彎曲勁度運動鞋之萬能測試儀材料測試...................34 圖4-2.1 三種彎曲勁度運動鞋在三種速度之推蹬時間...................35 圖4-2.2 三種彎曲勁度運動鞋在三種速度的推蹬期之水平峰值.............36 圖4-2.3 三種彎曲勁度運動鞋在三種速度的推蹬期之水平斜率.............37 圖4-2.4 三種彎曲勁度運動鞋在三種速度的推蹬期之水平衝量.............38 圖4-2.5 三種彎曲勁度運動鞋在三種速度的推蹬期之垂直峰值.............39 圖4-2.6 三種彎曲勁度運動鞋在三種速度的推蹬期之垂直斜率.............40 圖4-2.7 三種彎曲勁度運動鞋在三種速度的推蹬期之垂直衝量.............40 圖4-3.1 三種彎曲勁度在三種速度的推蹬期之蹠骨關節活動度.............41 圖4-3.2 三種彎曲勁度在三種速度的推蹬期之蹠骨關節背屈角速度.........42 圖4-3.3 三種彎曲勁度在三種速度的推蹬期之蹠骨關節蹠屈角速度.........43 圖4-3.4 三種彎曲勁度在三種速度的推蹬期之踝關節活動度..............44 圖4-3.5 三種彎曲勁度在三種速度的推蹬期之膝關節活動度..............46 圖4-4.1 三種彎曲勁度在三種速度的推蹬期之脛前肌活化................48 圖4-4.2 三種彎曲勁度在三種速度的推蹬期之內側腓腸肌活化.............49 圖4-4.3 三種彎曲勁度在三種速度的推蹬期之外側腓腸肌活化.............50 圖4-5.1 三種彎曲勁度在下墜跳之垂直力的第一次著地斜率..............55 圖4-6.1 三種彎曲勁度在立定跳遠之蹠骨關節活動度...................57 圖4-6.2 三種彎曲勁度在立定跳遠之踝關節活動度.....................58 圖4-6.3 三種彎曲勁度在連續小跳之蹠骨關節活動度...................61 圖4-6.4 三種彎曲勁度在連續小跳之蹠骨關節背屈角速度................61 圖4-6.5 三種彎曲勁度在連續小跳之蹠骨關節蹠屈角速度................62

    Aguinaldo, A., & Mahar, A. (2003). Impact loading in running shoes with cushioning column systems. Journal of Applied Biomechanics, 19(4), 353-360.
    Aquino, A., & Payne, C. (1999). Function of the plantar fascia. The Foot, 9(2), 73–78.
    Ashby, B. M.,& Heegaard, J. H. (2002). Role of arm motion in the standing long jump. Journal of Biomechanics, 35(12),1631-1637.
    Ashby, B. M.,& Delp, S. L. (2006). Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. Journal of Biomechanics, 39(9),1726-1734.
    Brüggemann, G. P., Arampatzis, A., & Emrich, F.(2007). Biomechanical and metabolic analysis of long sprint running of the double transtibial amputee athlete O. Pistorius using Cheetah sprint prostheses - Comparison with able-bodied athletes at the same level of 400m sprint performance -A study performed on the request of the IAAF. (Report 1512/2007). Retrieved from Institute of Biomechanics and Orthopaedics German Sport University Cologne. Web site: http://www.aipsmedia.com/allegati/Pistorius_Final_Report.pdf.
    Cikajlo, I., & Matjačić, Z. (2007). The influence of boot stiffness on gait kinematics and kinetics during stance phase. Ergonomics, 50(12), 2171-2182.
    Cortes, N., Onate, J., Abrantes, J., Gagen, L., Dowling, E., & Bonnie Van Lunen, B. V. (2007). Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. Journal of Applied Biomechanics, 23(4), 289-299.
    Goldmann, J. P., Sanno, M., Willwacher, S., Heinrich, K., & Brüggemann, G. P. (2012). The potential of toe flexor muscles to enhance performance. Journal of Sports Sciences, 31(4), 424–433.
    Hicks, J. H. (1954). The mechanics of the foot II. The plantar aponeurosis and the arch. Journal of Anatomy, 88, 25-30.
    Ishikawa, M., Pakaslahti, J., & Komi, P.V. (2007) Medial gastrocnemius muscle behavior during human running and walking. Gait & Posture, 25(3), 380–384.
    Jones, C., & Wilson, C. (2009). Defining advantage and athletic performance: The case of Oscar Pistorius. European Journal of Sport Science, 9(2), 125-131
    Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Eiomerhanics, 11(5), 253-259.
    Krell, J. B., & Stefanyshyn, D. J. (2006). The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes. Journal of Sports Sciences, 24(2), 175-180.
    Longman, J. (2007, 5). An Amputee Sprinter: Is He Disabled or Too-Abled? The New York Times Company. Retrieved from http://www.nytimes.com/2007/05/15/sports/othersports/15runner.html?_r=0
    Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R., Giannini S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & Posture, 25(3), 453–462.
    Lichtwark, G.A., & Wilson, A.M. (2008). Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. Journal of Theoretical Biology, 252(4), 662-673.
    Linthorne, N. P. (2008). Biomechanics of the long jump. In Y. Hong, ,& R. Bartlett, (Eds.), Routledge Handbook of Biomechanics and Human Movement Science (pp. 340-353). New York, NY: Routledge.
    Malcolm, P., Fiers, P., Segers, V., Caekenberghe, I. V., Lenoir M., & Clercq, D. D. (2009). Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton. Gait & Posture, 30(3), 322-327.
    Marcellini, A., Ferez, S., Issanchou, D., Leseleuc, E. D., & McNamee, M. (2012). Challenging human and sporting boundaries: The case of Oscar Pistorius. Performance Enhancement & Health, 1(1), 3-9
    Michael, W. (2007). Gait analysis : an introduction (4th ed.). Edinburgh ; New York : Butterworth-Heinemann.
    Nigg, B. M. (1986). Experimental techniques used in running shoe research. Biomechanics of Running Shoes. Champaign, IL: Human Kinetics.
    Nigg, B. M., Herzog, W., & Read, L. J. (1988). Effect of viscoelastic shoe insoles on vertical impact forces in heel-toe running. American Journal of Sports Medicine, 16(1), 70-76.
    Nigg, B. M., & SEGESSER, B. (1992). Biomechanical and orthopedic concepts in sport shoe construction. Medicine & Science in Sports & Exercise, 24(5), 595–602.
    Oleson, M., Adler, D., & Goldsmith, P. (2005). A comparison of forefoot stiffness in running and running shoe bending stiffness. Journal of Biomechanics, 38(9), 1886-1894.
    Perry J. (1992). Gait analysis: normal and pathological function. Thorofare, NJ : SLACK.
    Rose, J., & Gamble, J. G. (2006). Human Walking (3th ed.). Philidelphia, PA : Lippincott Williams and Wilkins.
    Roy, J. P., & Stefanyshyn, D. J. (2006). Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Medicine & Science in Sports & Exercise, 38(3), 562–569. doi: 10.1249/01.mss.0000193562.22001.e8.
    Saunders, P. U., Pyne, D.B., Telford, R.D., & Hawley, J.A.(2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465-485.
    Smith, G., Lake, M. , Lees, A., & Paul Worsfold, P. (2012). Measurement procedures affect the interpretation of metatarsophalangeal joint function during accelerated sprinting. Journal of Sports Sciences, 30(14), 1521–1527.
    Stefanyshyn, D., & Fusco, C. (2004). Increased shoe bending stiffness increases sprint performance. Sports Biomechanics, 3(1), 55-66.
    Stefanyshyn, D. J., & Nigg, B. M. (1997). Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. Journal of Biomechanics, 30(11), 1081-1085.
    Stefanyshyn, D. J., & Nigg, B. M. (1998). Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. Journal of Biomechanics, 16(2), 177-186.
    Stefanyshyn, D. J., & Nigg, B. M. (2000). Influence of midsole bending stiffness on joint energy and jump height performance. Medicine & Science in Sports & Exercise, 32(2), 471-476.
    Tinoco, N., Bourgit, D., & Morin, J. B. (2010). Influence of midsole metatarsophalangeal stiffness on jumping and cutting movement abilities. Journal of Sports Engineering and Technology, 224(3), 209-217.
    Toon, D., Vinet, A., Pain, M. T. G., & Caine, M. P. (2011). A methodology to investigate the relationship between lower-limb dynamics and shoe stiffness using custom-built footwear. Journal of Sports Engineering and Technology, 225(1), 32-37.
    Willwacher, S., König, M., Potthast, W., Brüggemann, G. P. (in press). Does specific footwear facilitate energy storage and return at the metatarso phalangeal joint in running? Journal of Applied Biomechanics.
    Yalamanchili, S., Abboud, R., & Wang, W. (2009). A model to calculate the joint movements and forces in the foot. The Ninth International Conference on Electronic Measurement & Instruments, 4, 532-536.

    下載圖示
    QR CODE