簡易檢索 / 詳目顯示

研究生: 顏克典
論文名稱: 間歇低氧訓練對有氧適能與心率變異性表現之影響
The Effects of Intermittent Normobaric Hypoxia Training on
指導教授: 林正常
Lin, Jung-Charng
郭博昭
Kuo, Bo-Jau
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 113
中文關鍵詞: 間歇性常壓低氧訓練自主神經系統心率變異性低氧有氧運動能力
英文關鍵詞: Intermittent hypoxic training, autonomic nervous system, heart rate variability, hypoxia, aerobic performance
論文種類: 學術論文
相關次數: 點閱:259下載:54
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 間歇性常壓低氧訓練是藉由低濃度氧氣製造器,營造常壓低氧環境,
    訓練操作爲吸入低氧混合氣 5 至 15 分鐘,再間歇吸入一般正常空氣 5 至
    15 分鐘,一次訓練重複 4 至 6 次循環,以 5 至24 天爲一訓練階段。研究
    目的:探討連續15 日間歇低氧刺激結合運動訓練對有氧運動能力與心臟
    自主神經系統調控之影響。研究方法: 30 位男性運動員隨機分配為間歇
    低氧運動訓練組(intermittent hypoxic training, IH+E, 12%O2; N=10)、間
    歇常氧運動訓練組(intermittent normoxia training, IN+E, 21%O2; N=10)與
    間歇低氧未運動訓練組(intermittent hypoxic control group, IH, 12%O2;
    N=10)等三組。連續執行 15 日間接低/常氧刺激,結合踩踏腳踏車功率器
    運動訓練/安靜操作 5 分鐘,間接常氧休息恢復 5 分鐘,配合運動負荷為
    65% 攝氧峰值負荷強度,共 6 循環計 60 分鐘,紀錄實驗操作前後之心率
    與呼吸頻率變異性;另評估 15 日實驗操作前、後之有氧運動能力(攝氧
    峰值、乳酸閾值作功值)及相關生理調控表現(身體組成、血液學指標、
    兒茶酚胺濃度)之變化。結果:一、間歇低氧運動訓練組顯著提升紅血球
    生成素(23%)、網狀紅血球計數(10.4%)與血紅素(14.7%)之生理表
    現,另亦增加攝氧峰值(26.7%)與乳酸閾值作功值(43.9%)等有氧運動
    能力;二、各組間身體組成並無差異;三、間歇低氧運動訓練組經連續15
    日間歇低氧刺激結合運動訓練後,其耗竭運動後去甲基腎上腺素分泌濃度
    變化率提升206.2%, 明顯高於其他二組;四、連續15 日間歇低氧結合運
    動訓練初期調控心臟之自主神經系統活性下降47.3%,副交感神經系統活
    性下降64.3%,另交感神經系統活性於初期顯示先迅速增加再行劇烈下降
    之震盪趨勢,三者均於中、後訓練階段逐步提升,顯示為適應間歇低氧結
    合運動訓練之強烈刺激,體內乃誘發較佳之自主神經系統調控心臟能力;
    然而身體須於訓練初期忍受自主神經系統驅策力之劇烈震盪調適。結論:
    結合運動之間歇低氧訓練有利於強化有氧運動能力,並誘發體內較佳之自
    主神經系統調控驅策心臟能力;然而為確保訓練初期體內自主調適之安全
    性,需於運動訓練過程,針對心率變異性加以持續監控。

    Objective: Interval normobaric hypoxic training (IHT) consists of repeated
    (three to more times) short periods (5-15 min each) of steady or progressive
    hypoxia, interrupted by similar periods of rest/recovery. Aim: to determine the
    effects of IHT on aerobic endurance and cardiac autonomic modulation in
    adolescents. Method: Thirty male adolescents completed a 15 days IHT regimen
    (5:5-min hypoxia-to-normoxia ratio for 60 min) of intermittent normobaric
    hypoxia (12%O2) combining 65% peak oxygen comsumption (V

    O2peak) (IH+E),
    intermittent normobaric normoxia (21%O2) combining 65% V

    O2peak (IN+E) or
    intermittent normobaric hypoxia (12%O2) only at rest (IH). Transfer function
    analysis of heart rate variability (HRV) and respiration were measured during
    IHT used to characterize low- (mainly sympathetic) and high-frequency (vagal)
    cardiovascular fluctuations. Before and after IHT experimental protocol, we
    recorded body composition and hematologic indexes at rest in the morning.
    Subjects were performed the incremental exercise test. Lactate threshold (LT),
    V ‧
    O2peak and catecholamines changes (CAs) were determined to refer as the
    aerobic capacity. Results: (1)There were significantly increased hematologic
    indexes in EPO (23%), reticularcyte count (10.4%) and hemoglobin (14.7%)
    after IHT in IH+E. (2)No significant changes were found on body composition.
    (3)The performances of LT (43.9%) and relatived V

    O2peak( 26.7%)were
    improved after IHT in IH+E. Plasma noradrenaline level after exhaustion test
    were increasing 206.2% significantly in IH+E. (4) IHT decreased
    sympathovagal tone in the initial stage and recovered progressively in later
    period. Chronic IHT combining exercise induced better sympathovagal balance,
    leading to greater tolerance of chronic hypoxia. Conclusion: These results
    suggested that exercise in combination with IHT might have a benefit for the
    aerobic performance and cardiac autonomic modulation.

    口試委員與系主任簽字證書…………………………… i 授權書…………………………………………………… ii 中文摘要………………………………………………… iv 英文摘要………………………………………………… v 謝 誌 …………………………………………………… vi 目 次 …………………………………………………… vii 表 次 …………………………………………………… x 圖 次 …………………………………………………… xi 第壹章 緒論 第一節 前言………………………………………………………… 1 第二節 問題背景…………………………………………………… 3 第三節 研究的重要性……………………………………………… 7 第四節 研究目的…………………………………………………… 8 第五節 研究假設…………………………………………………… 8 第六節 研究範圍與限制…………………………………………… 8 第七節 名詞操作性定義…………………………………………… 9 第貳章 相關文獻探討 第一節 自然低氧環境建構之低氧訓練模式及其研究進展……… 14 第二節 間歇性常壓低氧訓練研究進展…………………………… 19 第三節 心率變異性分析…………………………………………… 23 第四節 心率變異性分析在臨床應用之相關研究………………… 26 第五節 本章總結…………………………………………………… 30 第參章 研究方法與步驟 第一節 受試對象…………………………………………………… 31 第二節 實驗設計…………………………………………………… 31 第三節 實驗日期…………………………………………………… 32 第四節 實驗地點…………………………………………………… 32 第五節 實驗流程…………………………………………………… 33 第六節 實驗器材…………………………………………………… 35 第七節 測驗項目及實施方法.............................................................. 37 第八節 統計分析與資料處理.............................................................. 44 第肆章 結 果 第一節 受試者基本資料…………………………………………… 45 第二節 間歇低氧運動訓練對身體組成的影響…………………… 46 第三節 間歇低氧運動訓練對血液學指標的影響………………… 47 第四節 間歇低氧運動訓練對有氧運動能力表現之影響………… 49 第五節 間歇低氧運動訓練對兒茶酚胺分泌濃度之影響………… 50 第六節 間歇低氧運動訓練對心率變異性之影響………………… 53 第七節 間歇低氧運動訓練對心率變異性與兒茶酚胺濃度變化 之 相關探討……………………………………………………66 第伍章 討 論 第一節 受試者背景資料差異性之探討…………………………… 72 第二節 間歇低氧訓練對身體組成之作用效應…………………… 73 第三節 間歇低氧訓練對血液攜氧能力之作用效應……………… 73 第四節 間歇低氧訓練對有氧運動能力之作用效應……………… 77 第五節 間歇低氧訓練對自主神經系統急、慢性調控之作用效應 81 第陸章 結論與建議 第一節 結論………………………………………………………… 86 第二節 建議………………………………………………………… 87 引用文獻 88 附錄一 受試者須知……………………………………………………… 96 附錄二 健康情況調查表………………………………………………… 97 附錄三 受試者自願同意書……………………………………………… 99 附錄四 間歇低氧運動訓練前受試者基本資料與身體組成資料表…… 100 附錄五 間歇低氧運動訓練後受試者基本資料與身體組成資料表…… 101 附錄六 間歇低氧運動訓練前受試者有氧運動能力資料表…………… 102 附錄七 間歇低氧運動訓練後受試者有氧運動能力資料表…………… 103 附錄八 間歇低氧運動訓練前受試者血液學參數資料表……………… 104 附錄九 間歇低氧運動訓練後受試者血液學參數資料表……………… 105 附錄十 第 1 天間歇低氧運動訓練前安靜狀況受試者心率變異性資料 表………………………………………………………………… 106 附錄十一 第 3 天間歇低氧運動訓練前安靜狀況受試者心率變異性資 料表…………………………………………………………… 107 附錄十二 第 5 天間歇低氧運動訓練前安靜狀況受試者心率變異性資 料表…………………………………………………………… 108 附錄十三 第 10 天間歇低氧運動訓練前安靜狀況受試者心率變異性資 料表…………………………………………………………… 109 附錄十四 第 15 天間歇低氧運動訓練前安靜狀況受試者心率變異性資 料表…………………………………………………………… 110 附錄十五 第 1 天間歇低氧運動訓練後恢復階段受試者心率變異性資 料表…………………………………………………………… 111 附錄十六 第 15 天間歇低氧運動訓練後恢復階段受試者心率變異性資 料表…………………………………………………………… 112 個人小傳…………………………………………………………………… 113

    李世成、田野(1999)。間歇性缺氧類比高地訓練對小骨骼肌乳酸代謝的影響。中國運動醫學雜誌,18(2),126-128。
    李強、高偉、魏宏文 (2001)。間歇性低氧刺激對運動能力影響的實驗研究。體育科學,21(3),62-70。
    馮連世(1998)。高地訓練對中長跑運動員紅血球生成的作用。體育科學,18(4) ,78-81。
    許欣、曾凡星(2002)。間歇性常壓低氧訓練研究進展。中國運動醫學雜誌,5,490-494。
    許欣、魯力立、 陳章煌、劉向昕、李勇枝(2004)。間歇性常壓低氧訓練對心率變異的影響。 航太醫學與醫學工程 ,5,334-339。
    雷志平(1997)。間歇性低氧訓練的臨床應用研究。成都體育學院學報,23(3) ,65-68。
    Abbrecht, P. H., & Littell, J. K. (1972). Plasma erythropoietin in men and mice during acclimatization to different altitudes. Journal of Applied Physiology, 32(1), 54-68.
    Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220-222.
    Alfrey, C. P., Rice, L., Udden, M. M., & Driscoll, T. B. (1997). Neocytolysis: Physiological down-regulator of red-cell mass. Lancet, 349(9062), 1389-1390.
    Baevsky, R. (2002). Medical events during airline flights. The New England Journal of Medicine, 347(7), 535-537.
    Bailey, D. M., Davies, B., & Baker, J. (2000a). Training in hypoxia: Modulation of metabolic and cardiovascular risk factors in men. Medicine and Science in Sports and Exercise, 32(6), 1058-1066.
    Bailey, D. M., Davies, B., Milledge, J. S., Richards, M., Williams, S. R., Jordinson, M., et al. (2000b). Elevated plasma cholecystokinin at high altitude: Metabolic implications for the anorexia of acute mountain sickness. High Altitude Medicine and Biology, 1(1), 9-23.
    Boning, D. (1997). Altitude and hypoxia training - a short review. International Journal of Sports Medicine, 18(8), 565-570.
    Casas, M., Casas, H., Pages, T., Rama, R., Ricart, A., Ventura, J. L., et al. (2000). Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviation, space, and environmental medicine, 71(2), 125-130.
    Chapman, R. F., Stray-Gundersen, J., & Levine, B. D. (1998). Individual variation in response to altitude training. Journal of Applied Physiology, 85(4), 1448-1456.
    Chavez, J. C., Agani, F., Pichiule, P., & LaManna, J. C. (2000). Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. Journal of Applied Physiology, 89(5), 1937-1942.
    De Meersman, R. E. (1992). Respiratory sinus arrhythmia alteration following training in endurance athletes. European Journal of Applied Physiology and Occupational Physiology, 64(5), 434-436.
    deBoer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model. The American Journal of Physiology, 253(3 Pt 2), H680-689.
    Dehnert, C., Hutler, M., Liu, Y., Menold, E., Netzer, C., Schick, R., et al. (2002). Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. International Journal of Sports Medicine, 23(8), 561-566.
    Eckardt, K. U., Boutellier, U., Kurtz, A., Schopen, M., Koller, E. A., & Bauer, C. (1989). Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. Journal of Applied Physiology, 66(4), 1785-1788.
    Ewing, D. J., Martyn, C. N., Young, R. J., & Clarke, B. F. (1985). The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care, 8(5), 491-498.
    Garcia, N., Hopkins, S. R., & Powell, F. L. (2000). Intermittent vs continuous hypoxia: Effects on ventilation and erythropoiesis in humans. Wilderness and Environmental Medicine, 11(3), 172-179.
    Gunga, H. C., Rocker, L., Behn, C., Hildebrandt, W., Koralewski, E., Rich, I., et al. (1996). Shift working in the Chilean Andes (> 3,600 m) and its influence on erythropoietin and the low-pressure system. Journal of Applied Physiology, 81(2), 846-852.
    Guzzetti, S., Piccaluga, E., Casati, R., Cerutti, S., Lombardi, F., Pagani, M., et al. (1988). Sympathetic predominance in essential hypertension: A study employing spectral analysis of heart rate variability. Journal of Hypertension, 6(9), 711-717.
    Hahn, A. G., Gore, C. J., Martin, D. T., Ashenden, M. J., Roberts, A. D., & Logan, P. A. (2001). An evaluation of the concept of living at moderate altitude and training at sea level. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 128(4), 777-789.
    Hohnloser, S. H., Klingenheben, T., van de Loo, A., Hablawetz, E., Just, H., & Schwartz, P. J. (1994). Reflex versus tonic vagal activity as a prognostic parameter in patients with sustained ventricular tachycardia or ventricular fibrillation. Circulation, 89(3), 1068-1073.
    Hon, E. H., & Lee, S. T. (1965). The fetal electrocardiogram. 3. Display techniques. American Journal of Obstetrics and Gynecology, 91, 56-60.
    Ishida, R., & Okada, M. (1997). Spectrum analysis of heart rate variability for the assessment of training effects. The Japanese Journal of Clinical Pathology, 45(7), 685-688.
    Julian, C. G., Gore, C. J., Wilber, R. L., Daniels, J. T., Fredericson, M., Stray-Gundersen, J., et al. (2004). Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. Journal of Applied Physiology, 96(5), 1800-1807.
    Katayama, K., Matsuo, H., Ishida, K., Mori, S., & Miyamura, M. (2003). Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Altitude Medicine and Biology, 4(3), 291-304.
    Klausen, T., Christensen, H., Hansen, J. M., Nielsen, O. J., Fogh-Andersen, N., & Olsen, N. V. (1996). Human erythropoietin response to hypocapnic hypoxia, normocapnic hypoxia, and hypocapnic normoxia. European Journal of Applied Physiology and Occupational Physiology, 74(5), 475-480.
    Knaupp, W., Khilnani, S., Sherwood, J., Scharf, S., & Steinberg, H. (1992). Erythropoietin response to acute normobaric hypoxia in humans. Journal of Applied Physiology, 73(3), 837-840.
    Koistinen, P. O., Rusko, H., Irjala, K., Rajamaki, A., Penttinen, K., Sarparanta, V. P., et al. (2000). Epo, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Medicine and Science in Sports and Exercise, 32(4), 800-804.
    Koshelev, V. B., Tarasova, O. S., & Storozhevykh, T. P. (1995). Changes in the systemic hemodynamics and the vascular bed of the skeletal muscles in rats adapted to hypoxia. Hypoxia Medicine Journal(2), 16-19.
    Kuo, T. B., & Chan, S. H. (1992). Extraction, discrimination and analysis of single-neuron signals by a personal-computer-based algorithm. Biological Signals, 1(5), 282-292.
    Kuo, T. B., Shyr, M. H., & Chan, S. H. (1993). Simultaneous, continuous, on-line and real-time spectral analysis of multiple physiologic signals by a personal-computer-based algorithm. Biological Signals, 2(1), 45-56.
    Kuo, T. B. J., Chern, C. M., Sheng, W. Y., Wong, W. J., & Hu, H. H. (1998). Frequencydomain analysis of cerebral blood flow velocity and its correlation witharterial blood pressure. Journal of Cerebral Blood Flow and Metabolism, 18, 311-318.
    Kuo, C. D., Chen, G. Y., Lai, S. T., Wang, Y. Y., Shih, C. C., & Wang, J. H. (1999a). Sequential changes in heart rate variability after coronary artery bypass grafting. The American Journal of Cardiology, 83(5), 776-779, A779.
    Kuo, T. B., Lin, T., Yang, C. C., Li, C. L., Chen, C. F., & Chou, P. (1999b). Effect of aging on gender differences in neural control of heart rate. The American Journal of Physiology, 277(6 Pt 2), H2233-2239.
    Kuo, T. B., & Yang, C. C. (2000). Altered frequency characteristic of central vasomotor control in shr. The American Journal of Physiology ( Heart Circ Physiol ), 278(1), H201-207.
    La Rovere, M. T., Bigger, J. T., Jr., Marcus, F. I., Mortara, A., & Schwartz, P. J. (1998). Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Atrami (autonomic tone and reflexes after myocardial infarction) investigators. Lancet, 351(9101), 478-484.
    Levine, B. D. (2002). Intermittent hypoxic training: Fact and fancy. High Altitude Medicine and Biology, 3(2), 177-193.
    Levine, B. D., Friedman, D. B., Engfred, K., Hanel, B., Kjaer, M., Clifford, P. S., et al. (1992). The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Medicine and Science in Sports and Exercise, 24(7), 769-775.
    Levine, B. D., & Stray-Gundersen, J. (1997). "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 83(1), 102-112.
    Liu, C. C., Kuo, T. B., & Yang, C. C. (2003). Effects of estrogen on gender-related autonomic differences in humans. The American Journal of Physiology ( Heart Circ Physiol ), 285(5), H2188-2193.
    Mader, A., & Heck, H. (1986). A theory of the metabolic origin of "anaerobic threshold". International Journal of Sports Medicine, 7 Suppl 1, 45-65.
    Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84(2), 482-492.
    Mazzeo, R.S. & Marshall, P. (1989). Influence of plasma catecholamine on the lactate threshold during graded exercise. Journal of Applied Physiology, 67, 1319-1322.
    Miyazaki, S., & Sakai, A. (2000). The effect of "living high-training low" on physical performance in rats. International Journal of Biometeorology, 44(1), 24-30.
    Pastoris, O., Dossena, M., Foppa, P., Arnaboldi, R., Gorini, A., Villa, R. F., et al. (1995). Modifications by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism. Neurochemical Research, 20(2), 143-150.
    Piehl Aulin, K., Svedenhag, J., Wide, L., Berglund, B., & Saltin, B. (1998). Short-term intermittent normobaric hypoxia: haematological, physiological and mental effects. Scandinavian Journal of Medicine and Science in Sports, 8(3), 132-137.
    Puig, J., Freitas, J., Carvalho, M. J., Puga, N., Ramos, J., Fernandes, P., et al. (1993). Spectral analysis of heart rate variability in athletes. The Journal of Sports Medicine and Physical Fitness, 33(1), 44-48.
    Radaelli, A., Bernardi, L., Valle, F., Leuzzi, S., Salvucci, F., Pedrotti, L., et al. (1994). Cardiovascular autonomic modulation in essential hypertension. Effect of tilting. Hypertension, 24(5), 556-563.
    Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687.
    Robertson, J. D., Maughan, R. J., & Davidson, R. J. (1988). Changes in red cell density and related indices in response to distance running. European Journal of Applied Physiology and Occupational Physiology, 57(2), 264-269.
    Rodriguez, F. A., Casas, H., Casas, M., Pages, T., Rama, R., Ricart, A., et al. (1999). Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Medicine and Science in Sports and Exercise, 31(2), 264-268.
    Rodriguez, F. A., Ventura, J. L., Casas, M., Casas, H., Pages, T., Rama, R., et al. (2000). Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. European Journal of Applied Physiology, 82(3), 170-177.
    Rusko, H. K., Tikkanen, H. O., & Peltonen, J. E. (2004). Altitude and endurance training. Journal of Sports Sciences, 22(10), 928-944.
    Sayers, B. M. (1973). Analysis of heart rate variability. Ergonomics, 16(1), 17-32.
    Schmidt, W., Eckardt, K. U., Hilgendorf, A., Strauch, S., & Bauer, C. (1991). Effects of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level. International Journal of Sports Medicine, 12(5), 457-461.
    Schwartz, P. J., La Rovere, M. T., & Vanoli, E. (1992). Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation, 85(1 Suppl), I77-91.
    Seals, D.R. & Chase, P.B (1989). Influence of physical training on heart rate variability and baroreflex circulatory control. Journal of Applied Physiology, 66, 1886-1895.
    Semenza, G. L., Agani, F., Booth, G., Forsythe, J., Iyer, N., Jiang, B. H., et al. (1997). Structural and functional analysis of hypoxia-inducible factor 1. Kidney International, 51(2), 553-555.
    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry, 269(38), 23757-23763.
    Serebrovskaya, T. V. (2002). Intermittent hypoxia research in the former Soviet Union and the commonwealth of independent states: History and review of the concept and selected applications. High Altitude Medicine and Biology, 3(2), 205-221.
    Shin, K., Minamitani, H., Onishi, S., Yamazaki, H., & Lee, M. (1997). Autonomic differences between athletes and nonathletes: Spectral analysis approach. Medicine and Science in Sports and Exercise, 29(11), 1482-1490.
    Stegmann, H., Kindermann, W., & Schnabel, A. (1981). Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine, 2(3), 160-165.
    Stray-Gundersen, J., Chapman, R. F., & Levine, B. D. (2001). "Living high-training low" altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 91(3), 1113-1120.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation.,93(5),1043-1065.
    Townsend, N. E., Gore, C. J., Hahn, A. G., McKenna, M. J., Aughey, R. J., Clark, S. A., et al. (2002). Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. Journal of Applied Physiology, 93(4), 1498-1505.
    Truijens, M. J., Toussaint, H. M., Dow, J., & Levine, B. D. (2003). Effect of high-intensity hypoxic training on sea-level swimming performances. Journal of Applied Physiology, 94(2), 733-743.
    Tuininga, Y. S., van Veldhuisen, D. J., Brouwer, J., Haaksma, J., Crijns, H. J., Man in't Veld, A. J., et al. (1994). Heart rate variability in left ventricular dysfunction and heart failure: Effects and implications of drug treatment. British Heart Journal, 72(6), 509-513.
    Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., Billeter, R., & Hoppeler, H. (2001). Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91(1), 173-182.
    Vrana, M., Fejfar, Z., Horak, O., Hyza, Z., Stupka, J., & Lanska, V. (1993). [Variation in the r-r intervals on the electrocardiogram. A new diagnostic method in cardiology]. Cor et Vasa, 35(1), 32-40.
    Wang, G. L., & Semenza, G. L. (1996). Molecular basis of hypoxia-induced erythropoietin expression. Current Opinion in Hematology, 3(2), 156-162.
    Wiener, C. M., Booth, G., & Semenza, G. L. (1996). In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochemical and Biophysical Research Communications, 225(2), 485-488.
    Wilber, R. L. (2001). Current trends in altitude training. Sports Medicine, 31(4), 249-265.
    Wolf, M. M., Varigos, G. A., Hunt, D., & Sloman, J. G. (1978). Sinus arrhythmia in acute myocardial infarction. The Medical Journal of Australia, 2(2), 52-53.
    Yamamoto, Y., Hughson, R. L., & Peterson, J. C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. Journal of Applied Physiology, 71(3), 1136-1142.
    Yang, C. C., & Kuo, T. B. (1999). Assessment of cardiac sympathetic regulation by respiratory-related arterial pressure variability in the rat. Journal of Physiology, 515 (Pt 3), 887-896.
    Zuanetti, G., Latini, R., Neilson, J. M., Schwartz, P. J., & Ewing, D. J. (1991). Heart rate variability in patients with ventricular arrhythmias: Effect of antiarrhythmic drugs. Antiarrhythmic drug evaluation group (adeg). Journal of the American College of Cardiology, 17(3), 604-612.

    QR CODE