簡易檢索 / 詳目顯示

研究生: 張嘉文
Jhang, Jia-Wun
論文名稱: 互動速率蒙地卡羅路徑追蹤: 在包含鏡面鏈的光傳輸路徑中產生高頻效果
Interactive Monte Carlo Path Tracing for Rendering High Frequency Effects in Light Transport Paths with Specular Chains
指導教授: 張鈞法
Chang, Chun-Fa
口試委員: 張鈞法
Chang, Chun-Fa
莊永裕
Chuang, Yung-Yu
陳炳宇
Chen, Bing-Yu
蔡侑庭
Tsai, Yu-Ting
賴祐吉
Lai, Yu-Chi
簡韶逸
Chien, Shao-Yi
口試日期: 2025/01/22
學位類別: 博士
Doctor
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 87
中文關鍵詞: 蒙地卡羅路徑追蹤即時算圖鏡面光傳輸路徑焦散流形去雜訊行動裝置
英文關鍵詞: Monte Carlo path tracing, real-time rendering, specular light paths, caustics, manifold, denoising, mobile
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202500369
論文種類: 學術論文
相關次數: 點閱:191下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蒙地卡羅路徑追蹤演算法透過模擬真實環境中光的反射和折射來產生逼真的畫面,此技術在影視、遊戲、物理模擬、建築設計中皆有著舉足輕重的地位。近幾年隨著電腦硬體的進步,以及更多有效的路徑採樣和去雜訊方法被提出,已經可以在電腦上即時地產生低雜訊的路徑追蹤影像。

    我們發現,雖然低頻的直接照明和間接照明有明顯的改善,但高頻的鏡面成像和焦散依舊無法保持銳利甚至消失,主要是因為能產生高頻效果的「含有鏡面鏈的光傳輸路徑」難以被找到,因此即使再透過後處理的方法去雜訊,也無法在動態場景中即時產生清晰且正確的高頻效果。

    低頻效果可以提升整體影像的層次感,但高頻效果往往是最能吸引眼球的部分,因此我們致力於研究針對高頻效果即時路徑追蹤的演算法。在本論文中,我們發明了新的尋找鏡面鏈的技術SMBS和PMS來降低路徑追蹤在高頻效果的雜訊,SMBS透過大擾動改善鏡面鏈路徑的搜索,PMS透過光子重用優化起始鏡面鏈路徑的選擇。對於後續的去噪,我們提出了針對高頻效果的去雜訊演算法IGD,透過再利用路徑追蹤的資訊來提升去雜訊的品質。對於整體的算圖流程,我們設計了一個利於手機的低計算量方法RMNEE,將鏡面鏈演算法透過延遲著色和重採樣來機率性地不計算較低顏色貢獻的鏡面鏈路徑。

    與過去的方法相比,我們的方法在相同的採樣數下,大大提高了尋找鏡面鏈的成功率;等時比較下的高頻效果,路徑追蹤的雜訊更少、去雜訊後的誤差值更低;對於低算力的手機平台,更可以在畫面品質和執行速度上達到不錯的平衡。

    The Monte Carlo path tracing algorithm produces realistic images by simulating the reflection and refraction of light in the real world. This technique plays a crucial role in film production, gaming, physical simulations, and architectural design. With the advancement of hardware and the development of more effective path sampling and denoising methods, low-noise path-traced images can be generated in real time on computers now.

    However, while low-frequency effects such as direct and indirect illumination have seen significant improvements, high-frequency effects like mirror reflections, glass refractions and caustics often blur or miss. This limitation arises from the difficulty in finding light transport paths containing "specular chains", which are essential for producing high-frequency effects. As a result, even with post-processing denoising techniques, it remains challenging to achieve sharp and accurate high-frequency effects in real-time for dynamic scenes.

    Although low-frequency effects make images more stereoscopic, high-frequency effects are often the most visually striking elements. Therefore, this paper focuses on developing algorithms for real-time path tracing of high-frequency effects. We introduce two novel techniques, Specular Manifold Bisection Sampling (SMBS) and Photon-Driven Manifold Sampling (PMS), to reduce noise in high-frequency effects. SMBS improves the search for specular chains through large perturbations, while PMS optimizes the selection of initial paths by reusing photon information. For subsequent denoising, we propose the Improved G-Buffer Denoising (IGD), which enhances denoising quality by leveraging additional path tracing information. For the overall rendering pipeline, we design a computationally efficient method, Resampled Manifold Next Event Estimation (RMNEE), optimized for mobile devices. RMNEE reduces the computation of low-contribution specular chains by integrating deferred shading and resampled importance sampling techniques.

    Compared to previous methods, our approach significantly increases the success rate of finding specular chains with the same number of samples. In equal-time comparisons, we reduce noise in high-frequency effects and achieve lower error rates after denoising. On low-power mobile platforms, our method strikes a favorable balance between image quality and execution speed.

    第一章 緒論 1 1.1 研究背景和動機 1 1.2 研究目的 2 1.3 論文貢獻 3 1.4 論文架構 3 第二章 電腦圖學中的高頻效果算圖 5 2.1 Rasterization 5 2.2 Ray Tracing 5 2.3 Path Tracing 6 2.3.1 Rendering Equation 6 2.3.2 Importance Sampling 7 2.4 Bidirectional Path Tracing(BDPT) 8 2.4.1 Multiple Importance Sampling(MIS) 9 2.5 Photon Mapping 11 2.6 Path Resampling 12 2.6.1 Resampled Importance Sampling(RIS) 13 2.6.2 Weighted Reservoir Sampling(WRS) 13 2.7 Path Guiding 14 2.8 Metropolis Light Transport(MLT) 15 2.8.1 Markov Chain Monte Carlo(MCMC) 16 2.9 Manifold Exploration 16 第三章 電腦圖學中的即時算圖 19 3.1 Renering Pipeline 19 3.1.1 Rasterization Pipeline 19 3.1.2 Ray Tracing Pipeline 20 3.2 Global Illumination 21 3.2.1 Direct Lighting 21 3.2.2 Indirect Lighting 22 3.3 Image-Based Rendering 22 3.3.1 Denoising 23 3.3.2 Upsampling 25 第四章 穩健的鏡面鏈演算法 27 4.1 Specular Manifold Bisection Sampling(SMBS) 29 4.1.1 背景知識 29 4.1.2 方法流程 31 4.1.3 實驗結果 37 4.2 Photon-Driven Manifold Sampling(PMS) 43 4.2.1 背景知識 43 4.2.2 方法流程 44 4.2.3 實驗結果 50 第五章 通用的去雜訊技術 53 5.1 ImprovedG-BufferDenoising(IGD) 54 5.1.1 背景知識 54 5.1.2 方法流程 55 5.1.3 實驗結果 59 第六章 低算力平台的路徑追蹤設計 63 6.1 Resampled Manifold Next Event Estimation(RMNEE) 64 6.1.1 背景知識 64 6.1.2 方法流程 65 6.1.3 實驗結果 68 第七章 結論與未來展望 71 7.1 結論 71 7.2 未來展望 73 7.2.1 鏡面鏈路徑搜索演算法 73 7.2.2 去雜訊演算法 75 參考文獻 77

    [1] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph., 39(4), August 2020.
    [2] Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and J. Pantaleoni. Restir gi: Path resampling for real-time path tracing. Computer Graphics Forum, 40(8):17–29, 2021.
    [3] Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman. Generalized resampled importance sampling: foundations of restir. ACMTrans. Graph., 41(4), July 2022.
    [4] NVIDIA. Nvidia real-time denoisers 4.11.0, 2024.
    [5] NVIDIA. Nvidia deep learning super sampling 3.7, 2024.
    [6] Juan Pineda. A parallel algorithm for polygon rasterization. SIGGRAPH Comput. Graph., 22(4):17–20, jun 1988.
    [7] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78, page 270–274, New York, NY, USA, 1978. Association for Computing Machinery.
    [8] Ned Greene. Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications, 6(11):21–29, 1986.
    [9] Turner Whitted. An improved illumination model for shaded display. Commun. ACM,23(6):343–349, jun 1980.
    [10] JamesT.Kajiya. Therendering equation. SIGGRAPHComput.Graph., 20(4):143-150, aug 1986.
    [11] Teun Kloek, Tuen Kloek, and Herman Van Dijk. Bayesian estimates of equation system parameters: An application of integration by monte carlo. Econometrica, 46:1–19, 02 1978.
    [12] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Proceedings Of Third International Conference On Computational Graphics And Visualization Techniques (Compugraphics ’93), pages 145–153, 1993.
    [13] Eric Veach. Robust monte carlo methods for light transport simulation. In Robust Monte Carlo methods for light transport simulation, 1997.
    [14] Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques ’96, page 21–30, Berlin, Heidelberg, 1996. Springer-Verlag.
    [15] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon mapping. ACM Trans. Graph., 27(5), December 2008.
    [16] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon mapping. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, New York, NY, USA, 2009. Association for Computing Machinery.
    [17] Anton S. Kaplanyan and Carsten Dachsbacher. Adaptive progressive photon mapping. ACM Trans. Graph., 32(2), April 2013.
    [18] Zehui Lin, Sheng Li, Xinlu Zeng, Congyi Zhang, Jinzhu Jia, Guoping Wang, and Dinesh Manocha. Cppm: chi-squared progressive photon mapping. ACM Trans. Graph., 39(6), November 2020.
    [19] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. Light transport simulation withvertexconnectionandmerging. ACMTrans.Graph.,31(6), nov 2012.
    [20] Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating path tracing by reusing paths. In Proceedings of the 13th Eurographics Workshop on Rendering, EGRW’02, page 125–134, Goslar, DEU, 2002. Eurographics Association.
    [21] PabloBauszat,VictorPetitjean, andElmarEisemann. Gradient-domainpathreusing. ACMTrans. Graph., 36(6), November 2017.
    [22] Xiaofeng Xu, Lu Wang, and Beibei Wang. Efficient caustics rendering via spatial and temporal path reuse. Computer Graphics Forum, 2023.
    [23] Jakub Boksansky, Paula Jukarainen, and Chris Wyman. Rendering many lights with grid-based reservoirs. In Adam Marrs, Peter Shirley, and Ingo Wald, editors, Ray Tracing Gems II, pages 351–365. APress, August 2021.
    [24] Hangyu Zhang and Beibei Wang. World-space spatiotemporal path resampling for path tracing. Computer Graphics Forum (Proceedings of PG 2023), 2023.
    [25] Justin F. Talbot, David Cline, and Parris Egbert. Importance resampling for global illumination. In Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR ’05, page 139–146, Goslar, DEU, 2005. Eurographics Association.
    [26] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, March 1985.
    [27] Chris Wyman. Weighted reservoir sampling: Randomly sampling streams. In Adam Marrs, Peter Shirley, and Ingo Wald, editors, Ray Tracing Gems II, pages 345–349. APress, August 2021.
    [28] Addis Dittebrandt, Johannes Hanika, and Carsten Dachsbacher. Temporal Sample Reuse for Next Event Estimation and Path Guiding for Real-Time Path Tracing. In Carsten Dachsbacher and Matt Pharr, editors, Eurographics Symposium on Rendering- DL-only Track. The Eurographics Association, 2020.
    [29] Alejandro Conty Estevez and Christopher Kulla. Practical caustics rendering with adaptive photon guiding. In ACM SIGGRAPH 2020 Talks, SIGGRAPH ’20, New York, NY, USA, 2020. Association for Computing Machinery.
    [30] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97,page65–76,USA,1997.ACMPress/Addison-WesleyPublishing Co.
    [31] Csaba Kelemen and László Szirmay-Kalos. Simple and robust mutation strategy for metropolis light transport algorithm. Technical Report TR-186-2-01-18, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria, jul 2001. human contact: technicalreport@cg.tuwien.ac.at.
    [32] Wenzel Jakob and Steve Marschner. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph., 31(4), jul 2012.
    [33] Johannes Hanika, MarcDroske, andLucaFascione. Manifold next event estimation. Comput. Graph. Forum, 34(4):87–97, jul 2015.
    [34] Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. Specular manifold sampling for rendering high-frequency caustics and glints. ACM Trans. Graph., 39(4), jul 2020.
    [35] Zhimin Fan, Pengpei Hong, Jie Guo, Changqing Zou, Yanwen Guo, and Ling-Qi Yan. Manifold path guiding for importance sampling specular chains. ACM Transactions on Graphics, 42:1–14, 12 2023.
    [36] Microsoft. Direct extension. https://www.nvidia.com/zh-tw/ geforce/technologies/dx12/, 1995.
    [37] Khronos Group. Vulkan. https://www.vulkan.org/, 2016.
    [38] Naty Hoffman TomasAkenine-Möller, Eric Haines. Real-Time Rendering (3rd ed.). A.K. Peters, 2008.
    [39] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. The triangle processor and normal vector shader: a vlsi system for high performance graphics. SIGGRAPH Comput. Graph., 22(4):21–30, June 1988.
    [40] James F. Blinn. Models of light reflection for computer synthesized pictures. In Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’77, page 192–198, New York, NY, USA, 1977. Association for Computing Machinery.
    [41] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models for refraction through rough surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR’07, page 195–206, Goslar, DEU, 2007. Eurographics Association.
    [42] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, page 203–231, New York, NY, USA, 2005. Association for Computing Machinery.
    [43] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and ElmarEisemann. Interactive indirect illumination using voxel cone tracing. Computer Graphics Forum, 30(7):1921–1930, September 2011. Special issue: Proceedings of Pacific Graphics- Session: Lighting & Rendering.
    [44] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. Edge-avoiding À-trous wavelet transform for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics, HPG ’10, page 67-75, Goslar, DEU, 2010. Eurographics Association.
    [45] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph., 24(4):197–206, sep 1990.
    [46] Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. Spatiotemporal variance-guided filtering: Real-time reconstruction for path-traced global illumination. In Proceedings of High Performance Graphics, HPG ’17, New York, NY, USA, 2017. Association for Computing Machinery.
    [47] ChakravartyR.AllaChaitanya, AntonS.Kaplanyan,ChristophSchied,MarcoSalvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph., 36(4), July 2017.
    [48] Intel. Intel open image denoise 2.3.0, 2024.
    [49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. ArXiv, abs/1505.04597, 2015.
    [50] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. A machine learning approach for filtering monte carlo noise. ACM Trans. Graph., 34(4), July 2015.
    [51] SteveBako,ThijsVogels, BrianMcwilliams, MarkMeyer, JanNováK,AlexHarvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-predicting convolutional 2017.
    [52] Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. Denoising with kernel prediction and asymmetric loss functions. ACM Trans. Graph., 37(4), July 2018.
    [53] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. Neural temporal adaptive sampling and denoising. Computer Graphics Forum, 39(2):147–155, 2020.
    [54] Jacob Munkberg and Jon Hasselgren. Neural denoising with layer embeddings. Computer Graphics Forum, 39(4):1–12, 2020.
    [55] Nikolai Hofmann, Jon Hasselgren, and Jacob Munkberg. Joint neural denoising of surfaces and volumes. Proc. ACM Comput. Graph. Interact. Tech., 6(1), May 2023.
    [56] Epic Games. Screen percentage with temporal upscale, 2024.
    [57] Epic Games. Temporal super resolution, 2024.
    [58] Robert Herzog, Elmar Eisemann, Karol Myszkowski, and H.-P. Seidel. Spatiotemporal upsampling on the gpu. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, page 91–98, New York, NY, USA, 2010. Association for Computing Machinery.
    [59] AMD. Amdfidelityfx super resolution 3.1.1, 2024.
    [60] Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik Vaidyanathan, and Angus G. Forbes. Temporally stable real-time joint neural denoising and supersampling. Proc. ACM Comput. Graph. Interact. Tech., 5(3), July 2022.
    [61] AMD. Neural supersampling and denoising for real-time path tracing, 2024.
    [62] Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. The naturalconstraint representation of the path space for efficient light transport simulation. ACMTrans. Graph., 33(4), July 2014.
    [63] Wenzel Jakob. Mitsuba renderer 2, 2020.
    [64] Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. Unbiased photon gathering for light transport simulation. ACM Trans. Graph., 34(6), November 2015.
    [65] Binh-Son Hua, Adrien Gruson, Derek Nowrouzezahrai, and Toshiya Hachisuka. Gradient-domain photon density estimation. Comput. Graph. Forum, 36(2):31-38, May 2017.
    [66] MarkusKettunen, MarcoManzi, MiikaAittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. Gradient-domain path tracing. ACM Trans. Graph., 34(4), July 2015.
    [67] Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent Burley, and Adam Martinez. Practical physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, New York, NY, USA, 2012. Association for Computing Machinery.
    [68] Greg Humphreys Matt Pharr, Wenzel Jakob. Physically Based Rendering: From Theory to Implementation (4th ed.). The MIT Press, 2023.
    [69] Andrew Gruber (Qualcomm). Mobile gpu power and performance, 2019.
    [70] NVIDIA. Leading developers kick-start next-gen gaming, 2019.
    [71] NanoReview. Most advanced comparisons of processors, smartphones, and laptops, 2025.
    [72] Khronos Group. Opengl. https://www.opengl.org/, 1992.
    [73] Blender. Blender 4.3, 2024.
    [74] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo techniques for direct lighting calculations. ACM Trans. Graph., 15(1):1–36, jan 1996.
    [75] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH Comput. Graph., 24(4):145–154, September 1990.
    [76] ARM. Ray traversal: ray tracing pipeline versus ray query, 2023.
    [77] James Arvo and David Kirk. Particle transport and image synthesis. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’90, page 63–66, New York, NY, USA, 1990. Association for Computing Machinery.
    [78] Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered harmful: wavefront path tracing on gpus. In Proceedings of the 5th High-Performance Graphics Conference, HPG ’13, page 137–143, New York, NY, USA, 2013. Association for Computing Machinery.
    [79] Shaohua Fan, Stephen Chenney, and Yu-chi Lai. Metropolis photon sampling with optional user guidance. In Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR ’05, page 127–138, Goslar, DEU, 2005. Eurographics Association.
    [80] Toshiya Hachisuka and Henrik Wann Jensen. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5), October 2011.
    [81] Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. Robust light transport simulation via metropolised bidirectional estimators. ACM Trans. Graph., 35(6), December 2016.
    [82] Pascal Grittmann, Arsène Pérard-Gayot, Philipp Slusallek, and Jaroslav Křivánek. Efficient caustic rendering with lightweight photon mapping. Computer Graphics Forum, 37(4):133–142, 2018.
    [83] Jiawei Huang, Hajime Tanaka, Taku Komura, and Yoshifumi Kitamura. Online photon guiding with 3d gaussians for caustics rendering, 2024.
    [84] Ana Granizo-Hidalgo and Nicolas Holzschuch. Interactive rendering of caustics using dimension reduction for manifold next-event estimation. Proc. ACM Comput. Graph. Interact. Tech., 7(1), May 2024.
    [85] Chris Wyman. An approximate image-space approach for interactive refraction. ACMTrans. Graph., 24(3):1050–1053, July 2005.
    [86] Zhimin Fan, Pengpei Hong, Jie Guo, Changqing Zou, Yanwen Guo, and Ling-Qi Yan. Manifold path guiding for importance sampling specular chains. ACM Trans. Graph., 42(6), December 2023.
    [87] Zackary Misso, Benedikt Bitterli, Iliyan Georgiev, and Wojciech Jarosz. Unbiased and consistent rendering using biased estimators. ACM Trans. Graph., 41(4), July 2022.
    [88] Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. Continuous multiple importance sampling. ACM Trans. Graph., 39(4), August 2020.

    下載圖示
    QR CODE