研究生: |
陳彥霖 Chen, Yan-Lin |
---|---|
論文名稱: |
建立以單分子螢光顯微技術研究Shugoshin-1蛋白與潛力治療用胜肽間動態交互作用的平台 Development of a single-molecule-fluorescence-microscopy-based platform to study dynamic interactions between Shugoshin-1 and potential therapeutic peptides |
指導教授: |
李以仁
Lee, I-Ren |
口試委員: |
楊立威
Yang, Lee-Wei 孫英傑 Sun, Ying-Chieh |
口試日期: | 2021/08/12 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 胜肽-胜肽交互作用 、Sgo1 、PP2A 、抗微生物胜肽 、單分子螢光共振能量轉移 |
英文關鍵詞: | Peptide-Peptide interactions, Sgo1, PP2A, Antimicrobial peptides, smFRET |
DOI URL: | http://doi.org/10.6345/NTNU202101171 |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質-蛋白質交互作用(Protein-Protein interactions, PPIs)促進大部分生物機能,蛋白質區域與區域之間的交互作用(Domain-Domain interactions, DDIs)引導功用性蛋白在特定區域作用,交互作用必須通過蛋白質的二級結構進行,二級結構中螺旋結構穩定且單純,探討螺旋結構之間的交互作用能夠得到更精確的結果。
Shugoshin 1 (Sgo1)和蛋白磷酸酶2A (PP2A)之間的結合研究說明Sgo1募集PP2A在保護姊妹染色體中有重要的作用。為了發展一系列抗微生物胜肽,我們擷取Sgo1-PP2A交互作用的片段,將目標Sgo1胜肽和DNA交聯,並經由與生物素標記的互補DNA結合而固定在單分子檢驗平台上,並在緩衝溶液中添加螢光標記的游離潛力治療用胜肽進行交互作用,利用單分子螢光顯微鏡研究胜肽-胜肽交互作用動力學。和傳統的方法比較,需要的胜肽濃度相對較低(< 100 nM),使我們可以對潛力治療用胜肽進行更廣泛的篩選。
Protein-Protein Interactions (PPIs) facilitate many biological functions, and Domain-Domain Interactions (DDIs) induce functional protein activity in specific regions. The interactions between domains are usually dictated by their secondary structures . Helical structure is relatively simple and stable , hence , becomes a suitable candidate for studying domain-domain interactions . Previous study of Shugoshin 1(Sgo1)-Protein Phosphatase 2A(PP2A) binding demonstrated that recruitment of PP2A by Sgo1 plays an important role in the protection of sister chromatid , Hence , becomes a potent target for the development of antimicrobial peptides. We extract the fragments of Sgo1-PP2A interaction and establish a single-molecule-fluorescence-microscopy-based platform for studying the peptide-peptide interaction dynamics. Target peptide (Sgo1)-DNA hybrid was used in the immobilized single-molecule assays and interacted with the fluorescence-labeled free potential therapeutic peptides in buffer solution. The required concentration (< 100 nM) of peptides is relatively low compared to conventional methods, allowing us to perform a wider range of screening on the potential therapeutic peptides.
[1] Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology. 2020, 11, 582779
[2] Lau, J. L.; Dunn, M. K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry 2018, 26 (10), 2700–2707.
[3] Marqus, S.; Pirogova, E.; Piva, T. J. Evaluation of the Use of Therapeutic Peptides for Cancer Treatment. Journal of Biomedical Science 2017, 24 (1), 21.
[4] Burba, A. E. C.; Lehnert, U.; Yu, E. Z.; Gerstein, M. Helix Interaction Tool (HIT): A Web-Based Tool for Analysis of Helix-Helix Interactions in Proteins. Bioinformatics 2006, 22 (22), 2735–2738.
[5] Kangueane, P.; Nilofer, C. Principles of Protein-Protein Interaction. In Protein-Protein and Domain-Domain Interactions; Springer Singapore: Singapore, 2018; 93–111.
[6] Rao, V. S.; Srinivas, K.; Sujini, G. N.; Kumar, G. N. S. Protein-Protein Interaction Detection: Methods and Analysis. International Journal of Proteomics 2014, 1–12.
[7] M. Chetty and A. Ngom, “Domain -Domain Interaction Identific Ation with a Feature Selection Approach,” in Pattern Recognition in Bioinformatics, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008, 178–186.
[8] Xu, Z.; Cetin, B.; Anger, M.; Cho, U. S.; Helmhart, W.; Nasmyth, K.; Xu, W. Structure and Function of the PP2A-Shugoshin Interaction. Molecular Cell 2009, 35 (4), 426–441.
[9] Acuner Ozbabacan, S. E.; Engin, H. B.; Gursoy, A.; Keskin, O. Transient Protein-Protein Interactions. Protein Engineering Design and Selection 2011, 24 (9), 635–648.
[10] Hu, H.-Y.; Chen, C.-F. Artificial Supersecondary Structures Based on Aromatic Oligoamides. In Protein Supersecondary Structures; Methods in Molecular Biology, 2012; 932, 219–234.
[11] Tsai, C.-Y.; Salawu, E. O.; Li, H.; Lin, G.-Y.; Kuo, T.-Y.; Voon, L.; Sharma, A.; Hu, K.-D.; Cheng, Y.-Y.; Sahoo, S.; Stuart, L.; Chen, C.-W.; Chang, Y.-Y.; Lu, Y.-L.; Ke, X.; Wu, C.-C.; Lan, C.-Y.; Fu, H.-W.; Yang, L.-W. Secondary Structure Motifs Made Searchable to Facilitate the Functional Peptide Design; Bioinformatics, 2019.
[12] L.-H. Wang, C.-J. Yen, T.-N. Li, S. Elowe, W.-C. Wang, and L. H.-C. Wang, “Sgo1 is a potential therapeutic target for hepatocellular carcinoma,” Oncotarget, 2015 6-(4), 2023–2033.
[13] Mehta, G.; Anbalagan, G. K.; Bharati, A. P.; Gadre, P.; Ghosh, S. K. An Interplay between Shugoshin and Spo13 for Centromeric Cohesin Protection and Sister Kinetochore Mono-Orientation during Meiosis I in Saccharomyces Cerevisiae. Current Genetics 2018, 64 (5), 1141–1152.
[14] Kato, A.; Miyazaki, M.; Ambiru, S.; Yoshitomi, H.; Ito, H.; Nakagawa, K.; Shimizu, H.; Yokosuka, O.; Nakajima, N. Multidrug Resistance Gene (MDR-1) Expression as a Useful Prognostic Factor in Patients with Human Hepatocellular Carcinoma after Surgical Resection. Journal of. Surgical. Oncology. 2001, 78 (2), 110–115.
[15] Zhu, A. X. Systemic Therapy of Advanced Hepatocellular Carcinoma: How Hopeful Should We Be? The Oncologist 2006, 11 (7), 790–800.
[16] Clarke, A.; Orr-Weaver, T. L. Sister Chromatid Cohesion at the Centromere: Confrontation between Kinases and Phosphatases? Developmental Cell 2006, 10 (5), 544–547.
[17] Boavida, A.; Santos, D.; Mahtab, M.; Pisani, F. M. Functional Coupling between DNA Replication and Sister Chromatid Cohesion Establishment. International Journal of Molecular Sciences, 2021, 22 (6), 2810.
[18] Gao, Y.; Sirinakis, G.; Zhang, Y. Highly Anisotropic Stability and Folding Kinetics of a Single Coiled Coil Protein under Mechanical Tension. Journal of the American. Chemical Society. 2011, 133 (32), 12749–12757.
[19] van Ginkel, J.; Filius, M.; Szczepaniak, M.; Tulinski, P.; Meyer, A. S.; Joo, C. Single-Molecule Peptide Fingerprinting. Proceedings of the National Academy of Sciences of the USA 2018, 115 (13), 3338–3343.
[20] Duff, Jr., M. R.; Grubbs, J.; Howell, E. E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity. Journal of Visualized Experiments 2011, No. 55, 2796.
[21] 伍秀菁, 林美吟, and 汪若文, 化學分析儀器. 新竹市: 行政院國家科學委員會精密儀器發展中心, 1998.
[22] Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15 (5), 10481–10510.
[23] Williams, B. A. R.; Chaput, J. C. Synthesis of Peptide‐Oligonucleotide Conjugates Using a Heterobifunctional Crosslinker. Current Protocols in Nucleic Acid Chemistry 2010, 42 (1).
[24] Lavigne, J.-P.; Espinal, P.; Dunyach-Remy, C.; Messad, N.; Pantel, A.; Sotto, A. Mass Spectrometry: A Revolution in Clinical Microbiology? Clinical Chemistry and Laboratory Medicine 2013, 51 (2).
[25] Schuler, B.; Hofmann, H. Single-Molecule Spectroscopy of Protein Folding Dynamics—Expanding Scope and Timescales. Current Opinion in Structural Biology 2013, 23 (1), 36–47.
[26] Skruzny; Pohl; Abella. FRET Microscopy in Yeast. Biosensors 2019, 9 (4), 122.
[27] Ishikawa-Ankerhold, H. C.; Ankerhold, R.; Drummen, G. P. C. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17 (4), 4047–4132.
[28] Martin‐Fernandez, M. L.; Tynan, C. J.; Webb, S. E. D. A ‘Pocket Guide’ to Total Internal Reflection Fluorescence. Journal of Microscopy 2013, 252 (1), 16–22.
[29] 李以仁; 許顥頤; 秦志皞; 吳佳諭. 單分子螢光共振能量轉移光譜簡介. 化學 2015, 73 (4), 303–312.
[30] 黃子芸。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。2016.
[31] Roy, R.; Hohng, S.; Ha, T. A Practical Guide to Single-Molecule FRET. Nature Methods 2008, 5 (6), 507–516
[32] Chen, W.; Possemato, R.; Campbell, K. T.; Plattner, C. A.; Pallas, D. C.; Hahn, W. C. Identification of Specific PP2A Complexes Involved in Human Cell Transformation. Cancer Cell 2004, 5 (2), 127–136.