研究生: |
高意雯 Gao, Yi-Wun |
---|---|
論文名稱: |
層狀二硫化鉬在渦旋光激發下的共振拉曼光譜 Resonant Raman spectrum of layered molybdenum disulfide under twisted light excitation |
指導教授: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen |
口試委員: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen 詹楊皓 Chan, Yang-Hao |
口試日期: | 2023/07/12 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 二硫化鉬 、共振拉曼光譜 、光學軌道角動量 、拉曼位移 |
英文關鍵詞: | Molybdenum disulfide (MoS2), Resonant Raman spectroscopy, Orbital Angular Momentum (OAM), Raman shifting |
研究方法: | 實驗設計法 、 準實驗設計法 、 參與觀察法 、 比較研究 、 觀察研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202301444 |
論文種類: | 學術論文 |
相關次數: | 點閱:185 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二硫化鉬是一種典型的過渡金屬二硫化物,具有敏感的光學性質。由一層鉬原子平面夾在兩層硫原子平面之間,形成單層二硫化鉬。藉由二硫化鉬的拉曼光譜,可以觀察到各峰值振動頻率的變化和位移趨勢。在這項研究中,我們使用空間光調制器(SLM),將入射光改變成具有軌道角動量(OAM)的狀態,並觀察633 nm(1.96 eV)的OAM光激發單層二硫化鉬共振拉曼光譜的變化,經由實驗結果發現隨著軌道角動量(ℓ)的增加,共振拉曼峰值會產生藍移的現象。
除了對單層樣品進行照射,還測量了不同單層和雙層二硫化鉬樣品下的拉曼光譜變化,實驗結果顯示,僅在單層樣品中增加軌道角動量才會引起藍移現象。此外,也測量了不同光強度和低溫環境下的拉曼光譜,進一步確認拉曼藍移效應不受環境的熱效應影響。總結而言,在本文的後段中,證實了軌道角動量的提高會導致材料受到的壓縮力變大,使粒子的振動頻率增加,進而產生共振拉曼峰值的藍移現象,藉由實驗和理論的相互印證,更加確定光學軌道角動量對單層二硫化鉬拉曼藍移的物理機制。期待在未來能將光學軌道角動量應用於二維材料的檢測和開發中。
Molybdenum disulfide (MoS2) is a typical transition metal dichalcogenide with sensitive optical properties. It consists of a layer of molybdenum atoms sandwiched between two layers of sulfur atoms, forming a monolayer of MoS2. By using the Raman spectroscopy of MoS2, variations and shifting trends in the vibrational frequencies of the peaks can be observed. In this study, we employed a spatial light modulator (SLM) to transform the incident light into a state with orbital angular momentum (OAM) and observed the changes in the resonant Raman spectroscopy of monolayer MoS2 excited by OAM light at 633 nm (1.96 eV). Experimental results revealed a blue-shift in the resonant Raman peak as the orbital angular momentum (ℓ) increased.
In addition to irradiating monolayer samples, we also measured the Raman spectroscopy variations in different monolayer and bilayer MoS2 samples. The experimental results showed that the blue-shift phenomenon occurs only when OAM is increased in monolayer samples. Furthermore, we conducted Raman spectroscopy measurements at different light intensities and in a low-temperature environment to confirm that the Raman blue-shift effect is not influenced by thermal effects in the environment. In summary, in the latter part of this paper, it was confirmed that the increase in orbital angular momentum leads to increased compressive forces on the material, resulting in higher vibrational frequencies of particles and hence the blue-shift of resonant Raman peaks. Through mutual verification of experiments and theory, the physical mechanism of Raman blue-shift in monolayer MoS2 due to optical orbital angular momentum was further established. We look forward to applying optical orbital angular momentum in the detection and development of two-dimensional materials in the future.
1. Geim, Andre K and Irina V Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
2. Wang, Shanshan, Youmin Rong, Ye Fan, et al., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials, 2014. 26(22): p. 6371-6379.
3. Zhang, Xin, Xiao-Fen Qiao, Wei Shi, et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
4. Wu, Ming-hong, Lin Li, Ning Liu, et al., Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Safety and Environmental Protection, 2018. 118: p. 40-58.
5. Kuc, Agnieszka and Thomas Heine, The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chemical Society Reviews, 2015. 44(9): p. 2603-2614.
6. Van Baren, Jeremiah, Gaihua Ye, Jia-An Yan, et al., Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Materials, 2019. 6(2): p. 025022.
7. Yu, Yifu, Gwang-Hyeon Nam, Qiyuan He, et al., High phase-purity 1T′-MoS2-and 1T′-MoSe2-layered crystals. Nature chemistry, 2018. 10(6): p. 638-643.
8. Kadantsev, Eugene S and Pawel Hawrylak, Electronic structure of a single MoS2 monolayer. Solid state communications, 2012. 152(10): p. 909-913.
9. Tornatzky, Hans, Roland Gillen, Hiroshi Uchiyama, et al., Phonon dispersion in MoS2. Physical Review B, 2019. 99(14): p. 144309.
10. Graves, PRGDJ and D Gardiner, Practical raman spectroscopy. Springer, 1989. 10: p. 978-3.
11. Blanco, Élodie, Pavel Afanasiev, Gilles Berhault, et al., Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles. Comptes Rendus Chimie, 2016. 19(10): p. 1310-1314.
12. Chakraborty, Biswanath, HSS Ramakrishna Matte, AK Sood, et al., Layer‐dependent resonant Raman scattering of a few layer MoS2. Journal of Raman Spectroscopy, 2013. 44(1): p. 92-96.
13. Carvalho, Bruno R, Yuanxi Wang, Sandro Mignuzzi, et al., Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nature communications, 2017. 8(1): p. 14670.
14. Marrucci, Lorenzo, Ebrahim Karimi, Sergei Slussarenko, et al., Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics, 2011. 13(6): p. 064001.
15. Padgett, Miles, Johannes Courtial, and Les Allen, Light's orbital angular momentum. Physics today, 2004. 57(5): p. 35-40.
16. Hecht, Eugene, Optics. 2012: Pearson Education India.
17. Shen, Yijie, Xuejiao Wang, Zhenwei Xie, et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 2019. 8(1): p. 90.
18. Simbulan, Kristan Bryan, Teng-De Huang, Guan-Hao Peng, et al., Twisted-light-revealed lightlike exciton dispersion in monolayer MoS2. arXiv preprint arXiv:2001.01264, 2020.
19. Zhang, Kuang, Yuxiang Wang, Yueyi Yuan, et al., A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Applied sciences, 2020. 10(3): p. 1015.
20. Lian, Yudong, Xuan Qi, Yuhe Wang, et al., OAM beam generation in space and its applications: A review. Optics and Lasers in Engineering, 2022. 151: p. 106923.
21. Kovalev, Alexey A, Victor V Kotlyar, and Alexey P Porfirev, Optical trapping and moving of microparticles by using asymmetrical Laguerre–Gaussian beams. Optics Letters, 2016. 41(11): p. 2426-2429.
22. Zhao, Yan, Shishu Zhang, Yuping Shi, et al., Characterization of excitonic nature in Raman spectra using circularly polarized light. ACS nano, 2020. 14(8): p. 10527-10535.
23. Jullien, Aurélie, Spatial light modulators. Photoniques, 2020(101): p. 59-64.
24. Romaniuk, Yurii A, Sergii Golovynskyi, Alexander P Litvinchuk, et al., Influence of anharmonicity and interlayer interaction on Raman spectra in mono-and few-layer MoS2: A computational study. Physica E: Low-dimensional Systems and Nanostructures, 2022. 136: p. 114999.
25. Gontijo, Rafael N, Geovani C Resende, Cristiano Fantini, et al., Double resonance Raman scattering process in 2D materials. Journal of Materials Research, 2019. 34(12): p. 1976-1992.
26. Liu, HF, Swee Liang Wong, and DZ Chi, CVD growth of MoS2‐based two‐dimensional materials. Chemical Vapor Deposition, 2015. 21(10-11-12): p. 241-259.
27. Zhai, YJ, XL Chen, JH Li, et al., Low-Temperature Photoluminescence Properties of the Monolayer MoS2 Nanomaterals. Integrated Ferroelectrics, 2020. 212(1): p. 147-155.
28. Pan, Yang and Dietrich RT Zahn, Raman Fingerprint of Interlayer Coupling in 2D TMDCs. Nanomaterials, 2022. 12(22): p. 3949.
29. Sahoo, Satyaprakash, Anand PS Gaur, Majid Ahmadi, et al., Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. The Journal of Physical Chemistry C, 2013. 117(17): p. 9042-9047.
30. Li, Song-Lin, Hisao Miyazaki, Haisheng Song, et al., Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS nano, 2012. 6(8): p. 7381-7388.
31. Liu, D, Y Guo, L Fang, et al., Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013. 103(18): p. 183113.
32. Lu, Xin, Muhammad Iqbal Bakti Utama, Xingzhi Wang, et al., Gate‐Tunable resonant Raman spectroscopy of bilayer MoS2. Small, 2017. 13(35): p. 1701039.
33. Scalise, Emilio, Michel Houssa, Geoffrey Pourtois, et al., First-principles study of strained 2D MoS2. Physica E: Low-dimensional Systems and Nanostructures, 2014. 56: p. 416-421.
34. Taube, Andrzej, Jarosław Judek, Cezariusz Jastrzębski, et al., Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. ACS applied materials & interfaces, 2014. 6(12): p. 8959-8963.
35. Lee, Changgu, Hugen Yan, Louis E Brus, et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
36. Parkin, William M, Adrian Balan, Liangbo Liang, et al., Raman shifts in electron-irradiated monolayer MoS2. ACS nano, 2016. 10(4): p. 4134-4142.
37. Pak, Sangyeon, Juwon Lee, A‐Rang Jang, et al., Strain‐engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Advanced Functional Materials, 2020. 30(43): p. 2002023.
38. Hui, Yeung Yu, Xiaofei Liu, Wenjing Jie, et al., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS nano, 2013. 7(8): p. 7126-7131.
39. Chaplain, GJ, JM De Ponti, and RV Craster, Elastic orbital angular momentum. Physical Review Letters, 2022. 128(6): p. 064301.
40. Xin, Hongbao, Yuchao Li, Yong‐Chun Liu, et al., Optical forces: from fundamental to biological applications. Advanced Materials, 2020. 32(37): p. 2001994.