研究生: |
倪健嵐 |
---|---|
論文名稱: |
改良電化學製程製備二氧化鈦奈米管應用於染料敏化太陽能電池之研究 Application of Preparation TiO2 Nanotubes by improvement electrochemical processes on Dye Sensitized Solar cells |
指導教授: | 郭金國 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 染料敏化太陽能電池 、二氧化鈦奈米管 、電化學法 |
英文關鍵詞: | Dye-sensitized solar cells, TiO2 nanotubes, Electrochemical method |
論文種類: | 學術論文 |
相關次數: | 點閱:231 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以原有電化學法製備二氧化鈦奈米管進行改良。將純度鈦薄板(99.7%)為陽極,鉑(Pt)為陰極,於氟化銨(Ammonium Fluoride, NH4F)及去離子水(Deionized water, DI water)為溶質,乙二醇(Ethylene Glycol, EG)為溶劑所調配之電解液。改變工作溫度、NH4F濃度及電壓與時間之電化學參數,所製備出二氧化鈦奈米管改善製程上的管長,以助於染料敏化太陽電池的效率提昇。接著使用N719染料為染料光敏化劑,以入射光強度為100 mW/cm2情況下,當管長為24.1 μm時,其短路電流Jsc為11.50 mA/cm2、開路電壓Voc為0.75 V、填充因子FF為0.48、轉換效率η為4.21%,為目前實驗測得最高效率之結果。
In this study, the major purpose had improved original process of electrochemical method for making TiO2 nanotubes. It is manufactured by electrochemical method with electrolyte which mix for solution with ammonium fluoride (NH4F), ethylene glycol (EG) and DI-Water. Therefore, high purity titanium (99.7%) and platinum as anode and cathode are electrolyzed in electrolyte. The experimental parameters are changing operating temperature, NH4F concentration and voltage-time that improve to prepare TiO2 nanotubes for dye-sensitized solar cells application. Then, sensitizing use N719 dye and expose to light which light intensity is 100 mW/cm2. Finally the length of 24.1 μm is measured Jsc = 11.50 mA/cm2, Voc = 0.75 V, FF = 0.48 and η = 4.21% that is highest efficiency.
[1] M. A. Green, K. Emery, Y. Hshikawa., W. Warta and E. D. Dunlop, ”Solar cell efficiency tables (version 39)”, Progress in photovoktaics: research and applications, 20 (2012) 12-13.
[2] M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A, 365 (2007) 993-1005.
[3] M. Grätzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338-344.
[4] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737-740.
[5] R. W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, and R. Gronsky, “Synthesis, characterization, and properties of nanophase TiO2,” J. Mater. Res., 3 (1988) 1367.
[6] Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, “Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method,” Mater. Lett., 22 (1995) 77.
[7] M. A. Anderson, M. J. Gieselmann and Q. Xu, “Titania and alumina ceramic membranes,” J. Membr. Sci., 39 (1988) 243.
[8] M. Gomez, J. Rodriguez, S.-E. Lindquist, and C. G. Granqvist “Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering,” Thin Solid Films, 342 (1998) 148.
[9] K. Zhu, N. R. Neale, A. Midaner, and A. J. Frank “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett., 7 (2007) 69.
[10] 俞漢清,表面粗糙度標準及應用,中國計量出版社,中國,1997
[11] E. W. McFarland, J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature, 421 (2003) 616-618.
[12] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, “Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics“, Adv. Mater., 12 (2000) 1263-1267.
[13] I. Bedja, S. Hotchandani, P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with Bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) complex” J. Phys. Chem. A, 98 (1994) 4133-4140.
[14] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48 (2003) 53-229.
[15] K. M. Reddy, S. V. Manorama, A. R. Reddy, ”Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. and Phy., 78 (2003) 239-245.
[16] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, 20 (2004) 2900-2907.
[17] A. Ehret , L. Stuhl , and M. T. Spitler , “Spectral Sensitization of TiO2 Nanocrystalline electrodes with aggregated cyanine dyes”, J. Phys. Chem. B, 105 (2001) 9960–9965
[18] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry snd Photobiology A:Chemistry, 164 (2004) 3-14.
[19] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wade, S. Yanagida, “Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem.B, 109(2005) 3480.
[20] G. Smestad, C. Bignozzi, R. Argazzi, , “Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies”, Solar Energy Materials and Solar Cells, 32 (1994) 259.
[21] C.C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, “Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells”, J. Phys. Chem. C, 112 (2008) 19151.
[22] 陳建仲、薛聿芮、溫義楷,陽極氧化鋁與氧化鈦奈米管的製作與表面積的評估,工業材料雜誌,第277期,2010,第153-162頁。
[23] 林進榮,游文岳,簡淑華,二氧化鈦奈米管陣列薄膜用於染料敏化太陽能電池之研究,化工期刊,第56卷,第二期,2009,第16-29頁。
[24] 陳冠名,陽極氧化法製備奈米結構二氧化鈦薄膜於染料敏化太陽能電池之應用研究,台南科技大學機械工程研究所碩士論文,2004.6。
[25] 劉茂煌,奈米光電池,工業材料雜誌,第203期,2003,第91-97頁。
[26] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107 (2003) 8981-8987.
[27] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science 4 (1999) 314-321.
[28] H. Arakawa, K. Sayama, K. Hara, H. Sugihara, T. Yamaguchi, M. Yanagida, H. Kawauchi, T. Kashima, G. Fujihashi, S. Takano, “Improvement of efficiency of dye-sensitized solar cell –optimization of titanium oxide photoelectrode-“, 3rd World Conference on Photovoltaic Energy Conversion (2003) 11-18.
[29] G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, The Journal of Physical Chemistry B, 103 (1999) 692.
[30] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, “Nterfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces”, Journal of Physical Chemistry B, 105 (2001) 1422-1429.
[31] P. Wang, S.M. Zakeeruddin, R. Humphry-Baker,J.E. Moser, M. Grätzel, “Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells”, Chemistry of Materials, 16 (2004) 3246-3251.
[32] G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, “Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,” Langmuir, 18 (2002) 10493–10495.
[33] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujiahima, M. Uragami, “ Fabrication of an efficient solid-state dye-sensitized solar cell”, Langmuir, 19 (2003) 3572-3574.
[34] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency”, J. Photochem. Photobiolo. A: Chem., 164 (2004) 183-185.
[35] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies“, Nature, 395 (1998) 583-585.
[36] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, 295 (2002) 2425-2427.
[37] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials”, Snyth. Met., 125 (2001) 279-287.
[38] K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke, D. Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells”, Snyth. Met., 121 (2001) 1573-1574.
[39] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes”, J. Phys. Chem. B, , 107 (2003) 4374-4381.
[40] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, 70 (2001) 151-161.
[41] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101 (1997) 2576-2582.
[42] 伊艷紅,許澤輝,馮磊碩,楊書廷,李承斌,染料敏化太陽能電池對電極的研究發展,材料報導:綜述篇,第23卷,第5期,2009,第109
[43] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, J. T. Hupp, “Advancing beyond current generation dye-sensitized solar cells”, Energy Environ. Sci., 1 (2008) 66-78.