研究生: |
張家豪 Chang, Jia-Hao |
---|---|
論文名稱: |
臺灣兩種鼠科物種在時空棲位的區隔 Spatiotemporal niche partitioning between two sympatric murid rodents in Taiwan |
指導教授: |
李佩珍
Lee, Pei-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 多維棲位維度 、物種共存 、時空棲位 、棲位區隔 、齧齒目 |
英文關鍵詞: | multidimensional niche, niche partitioning, Rodentia, spatiotemporal niche, species coexistence |
DOI URL: | http://doi.org/10.6345/NTNU202001621 |
論文種類: | 學術論文 |
相關次數: | 點閱:166 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據競爭互斥原理(competitive exclusion principle),在兩物種具強烈競爭關係的前提下,應會進行棲位區隔(niche partitioning),以利穩定共存。臺灣森鼠(Apodemus semotus)及高山白腹鼠(Niviventer culturatus)為棲息於臺灣山區的夜行性、雜食性優勢鼠科(Muridea)物種。過去觀察資料顯示,高山白腹鼠較臺灣森鼠更傾向使用森林棲地,因此我推論空間棲位區隔,特別是對非地面棲地的使用,是兩物種共存的機制之一。此外,我預測兩物種在時間棲位上可能也會有區隔,不同時間與不同空間(地面棲地、非地面棲地)可能在微氣候、食物豐度、掠食壓力等方面條件都不同,因此當物種間有空間棲位上的差異時,可能會連帶反應到時間棲位上的差異;此外,高山白腹鼠與臺灣森鼠有相當的形值差異,可能具不同之體溫調節能力、新陳代謝效率與被掠食風險等,進而直接影響時間棲位的利用。本實驗利用被動式晶片掃描器及紅外線自動相機量化兩物種在水平、垂直的空間棲地以及夜晚不同時段的使用頻度,據此估算兩物種的棲位寬度與重疊度,並透過null models推論兩物種間是否有棲位區隔。同時,我進一步將時空棲位與環境溫度整合,進行多維度棲位區隔檢定。本實驗於2017年至2018年在臺灣南部山區的向陽國家森林遊樂區進行。結果顯示,高山白腹鼠較臺灣森鼠傾向使用非地面棲地,但兩物種在上、下半夜皆有相當的使用。將空間、時間棲位及溫度棲位維度合併分析的結果顯示,兩物種不具棲位區隔。本研究成果有助於釐清臺灣山區優勢鼠科物種共存之機制。
Following the competitive exclusion principle, niche partitioning between species under strong competition should facilitate stable coexistence. Apodemus semotus and Niviventer culturatus, both nocturnal and omnivorous, are two dominant murids in the montane region of Taiwan. Based on observational data, N. culturatus appear to use forest habitats more frequently than A. semotus. Therefore, I hypothesize that spatial niche partitioning between ground and arboreal habitats play a role in their coexistence. Furthermore, I also predict temporal niche partitioning between A. semotus and N. culturatus. Because different times and space (e.g. ground or arboreal) could represent different environmental conditions in microclimate, food availability and predation risk, temporal niche partitioning could occur as a byproduct of spatial niche partition or directly via mechanisms such as differential thermoregulation, metabolism and predation risk, the latter of which is particularly plausible for species that differ in morphology. In this study, I used RFID (Radio Frequency Identification) tagging and field infrared cameras to quantify the frequencies of use among different time periods throughout the night and different spatial locations (horizontal locations as well as ground versus arboreal habitats). Based on these data, I estimated the niche width for each species and the niche overlap between the species. Niche partitioning was tested by comparing the observed niche overlap with the null distribution of permutated niche overlaps. I also combined spatiotemporal niche with temperature niche to explore the partitioning of these two species in multidimensional niche space. The study was conducted from 2017 to 2018 at Siangyang Forest Recreation Area in southern Taiwan. The results indicated that N. culturatus used arboreal habitats more than A. semotus whereas both species overlapped extensively in their horizontal space use and temporal niche. In multidimensional niche space, A. semotus and N. culturatus also did not exhibit niche partitioning. This study contributed to our understanding of potential coexistence mechanisms between two dominant murids in Taiwan’s montane ecosystem.
Adler, G. H., Mangan, S. A., & Suntsov, V. (1999). Richness, Abundance, and Habitat Relations of Rodents in the Lang Bian Mountains of Southern Viet Nam. Journal of Mammalogy, 80(3), 891–898. https://doi.org/10.2307/1383257
Adler, Gregory H. (1996). Habitat relations of two endemic species of highland forest rodents in Taiwan. Zoological Studies, 35(2), 105–110.
Albrecht, M., & Gotelli, N. J. (2001). Spatial and temporal niche partitioning in grassland ants. Oecologia, 126(1), 134–141. https://doi.org/10.1007/s004420000494
Carothers, J. H., Jaksić, F. M., & Jaksic, F. M. (1984). Time as a Niche Difference: The Role of Interference Competition. Oikos, 42(3), 403. https://doi.org/10.2307/3544413
Castro-Arellano, I., & Lacher, T. E. (2009). Temporal niche segregation in two rodent assemblages of subtropical Mexico. Journal of Tropical Ecology, 25(6), 593–603. https://doi.org/10.1017/S0266467409990186
Castro-Arellano, I., Lacher, T. E., Willig, M. R., & Rangel, T. F. (2010). Assessment of assemblage-wide temporal niche segregation using null models. Methods in Ecology and Evolution, no-no. https://doi.org/10.1111/j.2041-210x.2010.00031.x
Cody, M. L. (1973). Coexistence, Coevoluation and Convergent Evolution in Seabird Communities. Ecology, 54(1), 31–44.
Connell, J. H. (1980). Diversity and the Coevolution of Competitors, or the Ghost of Competition Past. Oikos, 35(2), 131. https://doi.org/10.2307/3544421
Dewsbury, D. A., Lanier, D. L., & Miglietta, A. (1980). A Laboratory Study of Climbing Behavior in 11 Species of Muroid Rodents. 103(1), 66–72.
Dröge, E., Creel, S., Becker, M. S., & M’soka, J. (2016). Spatial and temporal avoidance of risk within a large carnivore guild. Ecology and Evolution, 7(1), 189–199. https://doi.org/10.1002/ece3.2616
Dueser, R. D., & Porter, J. H. (1986). Habitat Use by Insular Small Mammals : Relative Effects of Competition and Habitat Structure Author ( s ): Published by : Wiley Stable URL : http://www.jstor.org/stable/1938518 REFERENCES Linked references are availa. Wiley on Behalf of the Ecological Society of America, 67(1), 195–201.
Earl, Z., & Nel, J. A. J. (1976). Climbing Behaviour in Three African Rodent Species. Zoologica Africana, 11(1), 183–192. https://doi.org/10.1080/00445096.1976.11447523
Frazer, G.W., C.D. Canham, and K.P. Lertzman, 1999. Gap Light Analyser (GLA). Version 2.0: Imaging Software to Extract Canopy Structure and Gap Light Transmission Indices From True-Colour Fisheye Photographs. Users Manual and Program Documentation, Simon Fraser University, Burnaby, B.C. and the Institute of Ecosystem Studies, Millbrook, New York
Ferreguetti, Á. C., Tomás, W. M., & Bergallo, H. G. (2015). Density, occupancy, and activity pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. Journal of Mammalogy, 96(6), 1245–1254. https://doi.org/10.1093/jmammal/gyv132
Gallardo-Santis, A., Simonetti, J. A., & Vásquez, R. A. (2005). Influence of Tree Diameter on Climbing Ability of Small Mammals. Journal of Mammalogy, 86(5), 969–973. https://doi.org/10.1644/1545-1542(2005)86[969:iotdoc]2.0.co;2
Gause, G. F. (1934). Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science, 79(2036), 16–17. https://doi.org/10.1126/science.79.2036.16-a
Geange, S. W., Pledger, S., Burns, K. C., & Shima, J. S. (2011). A unified analysis of niche overlap incorporating data of different types. Methods in Ecology and Evolution, 2(2), 175–184. https://doi.org/10.1111/j.2041-210X.2010.00070.x
Gotelli, N. J. (1996). Null models in ecology. https://doi.org/10.5840/thought196641448
Hanski, I. (1981). Coexistence of Competitors in Patchy Environment with and without Predation. Oikos, 37(3), 306–312.
Hardin, G. (1960). The Competitive Exclusion Principle: An idea that took a century to be born has implications in ecology, economics and genetics. American Association for the Advencement of Science, 131(3409), 1292–1297.
Herrera, J. P., Duncan, N., Clare, E., Fenton, M. B., & Simmons, N. (2018). Disassembly of Fragmented Bat Communities in Orange Walk District, Belize. Acta Chiropterologica, 20(1), 147. https://doi.org/10.3161/15081109acc2018.20.1.011
Hoffmeyer, I. (1973). Interaction and Habitat Selection in the Mice Apodemus Flavicollis and A. Sylvaticus. Oikos, 24(1), 108. https://doi.org/10.2307/3543257
Hutchinson, G. (1957). A Treatise on Limnology. https://ugeb.pw/full-a-treatise-on.pdf
Kingsley, E. P., Kozak, K. M., Pfeifer, S. P., Yang, D. S., & Hoekstra, H. E. (2016). The ultimate and proximate mechanisms driving the evolution of long tails in forest deer mice. Evolution, 71(2), 261–273. https://doi.org/10.1111/evo.13150
Krebs, C. J. (1998). Ecological Methodology NICHE MEASURES AND RESOURCE PREFERENCES. In Ecological Methodology (Issue March, pp. 597–651).
Layne, J. N., & Layne, J. N. (1970). Climbing Behavior of Peromyscus floridanus and Peromyscus gossypinus. 51(3), 580–591.
Levins, R. 1965. Evolution in changing environments. Princeton cnivcrsity Press, Princeton. S.J. 120 pp.
Levin, S. A. (1970). Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle. The American Naturalist, 104(939), 413–423. https://doi.org/10.1086/282676
Levy, O., Dayan, T., Kronfeld-Schor, N., & Porter, W. P. (2012). Biophysical modeling of the temporal niche: from first principles to the evolution of activity patterns. The American Naturalist, 179(6), 794-804.
Macarthur, R. H. (1958). Population Ecology of Some Warblers of Northeastern Coniferous Forests. Population Ecology, 39(4), 599–619.
MacArthur, R.H., & MacArthur, J. W. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598.
MacArthur, Robert H., Diamond, J. M., & Karr, J. R. (1972). Density Compensation in Island Faunas. Ecology, 53(2), 330–342.
Meserve, P. L. (1977). Three-Dimensional Home Ranges of Cricetid Rodents. Journal of Mammalogy, 58(4), 549–558. https://doi.org/10.2307/1380003
Monterroso, P., Alves, P. C., & Ferreras, P. (2014). Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behavioral Ecology and Sociobiology, 68(9), 1403–1417. https://doi.org/10.1007/s00265-014-1748-1
Nakamura-Kojo, Y., Kojo, N., & Tamate, H. B. (2016). Spatial differences in arboreal activity of two rosents, the Japanese dormouse (Glirulus japonicus) and the small Japanese field mouse (Apodemus argenteus). Annales Zoologici Fennici, 53, 81–90.
Nishkata, S. (1981). Habitat Preference of Apodemus speoiosus and A. argenteus. Journal of the Japanese Forestry Society, 63(5), 151-155.
O'Farrell, M. J. (1974). Seasonal activity patterns of rodents in a sagebrush community. Journal of Mammalogy, 55(4), 809-823.
Paise, G., & Vieira, E. M. (2006). Daily Activity of a Neotropical Rodent (Oxymycterus Nasutus): Seasonal Changes and Influence of Environmental Factors. Journal of Mammalogy, 87(4), 733–739. https://doi.org/10.1644/05-mamm-a-158r5.1
Park, T. (1948). Experimental Studies of Interspecies Competition. Ecological Monographs, 18(3), 265–308.
Pianka, E. R. (1973). The Structure of Lizard Communities. Annual Review of Ecology and Systematics, 4, 53–74.
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards; Analyses of the Ecological Niche and Community Structure. American Society of Ichthyologists and Herpetologists, 1986(4), 1033–1036.
Ramesh, T., Kalle, R., Sankar, K., & Qureshi, Q. (2012). Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. Journal of Zoology, 287(4), 269–275. https://doi.org/10.1111/j.1469-7998.2012.00908.x
Richards, S. A., Nisbet, R. M., Wilson, W. G., & Possingham, H. P. (2000). Grazers and diggers: Exploitation competition and coexistence among foragers with different feeding strategies on a single resource. American Naturalist, 155(2), 266–279. https://doi.org/10.1086/303316
Roll, U., Dayan, T., & Kronfeld-Schor, N. (2006). On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology, 20(5), 479–490. https://doi.org/10.1007/s10682-006-0015-y
Roughgarden, J. (1974). Niche width: biogeographic patterns among Anolis lizard populations. American Naturalist, 108(962), 429–442.
Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185(4145), 27–39. https://doi.org/10.1126/science.185.4145.27
Shioya, K., Shiraishi, S., & Uchida, T. A. (1990). Microhabitat Segregation between Apodemus argenteus and A. speciosus in Northern Kyushu. Journal of the Mammalogical Society of Japan, 14(2), 105–118.
Shkolnik, A. (1971). Diurnal activity in a small desert rodent. International Journal of Biometeorology, 15(2–4), 115–120. https://doi.org/10.1007/BF01803884
Sunarto, S., Kelly, M. J., Parakkasi, K., & Hutajulu, M. B. (2015). Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. Journal of Zoology, 296(2), 104–115. https://doi.org/10.1111/jzo.12218
Vance, R. R. (1985). The stable coexistence of two competitors for one resource. American Naturalist, 126(1), 72–86. https://doi.org/10.1086/284397
Vieira, E. M., & Baumgarten, L. C. (1995). Daily activity patterns of small mammals in a cerrado area from central Brazil. Journal of Tropical Ecology, 11(2), 255–262. https://doi.org/10.1017/S0266467400008725
Wells, K., Pfeiffer, M., Lakim, M. B., & Kalko, E. K. V. (2006). Movement trajectories and habitat partitioning of small mammals in logged and unlogged rain forests on Borneo. Journal of Animal Ecology, 75(5), 1212–1223. https://doi.org/10.1111/j.1365-2656.2006.01144.x
Wells, K., Pfeiffer, M., Lakim, M. B., & Linsenmair, K. E. (2004). Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia. Journal of Biogeography, 31(4), 641–652. https://doi.org/10.1046/j.1365-2699.2003.01032.x
Winemiller, K. O., & Pianka, E. R. (1990). Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs, 60(1), 27–55. http://www.jstor.org/stable/1943025
Yu, H. T. (1993). Natural history of small mammals of subtropical montane areas in central Taiwan. Journal of Zoology, 231(3), 403–422.
Yu, H. T. (1994). Distribution and abundance of small mammals along a subtropical elevational gradient in central Taiwan. Journal of Zoology, 234(4), 577-600.
李玲玲、張簡琳玟、鄭錫奇與李筠筠。(2012)。太魯閣國家公園囓齒類動物相調查。中華民國國家公園學會。臺灣。