簡易檢索 / 詳目顯示

研究生: 陳宥良
Yu-Liang Chen
論文名稱: 探討國中三年級學生透過摺紙活動進行尺規作圖補救教學之成效
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 140
中文關鍵詞: 尺規作圖摺紙補救教學
英文關鍵詞: Geometric construction, Origami, Remedial instruction
論文種類: 學術論文
相關次數: 點閱:210下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學生在尺規作圖的學習上常遇到不少困難,本研究希望設計創新的教學法,利用直觀的摺紙經驗幫助學生學習尺規作圖。本研究有二個研究目的,第一為了解國三學生尺規作圖學習表現,第二為探討國三低學習成就學生透過摺紙活動進行尺規作圖補救教學之成效。
    本研究設計分成二部分,第一部分採取調查研究法,自編經效化的「尺規作圖試題」工具,挑選台北地區三所國中,共150位學生進行施測;第二部分採用教學實驗法,研究者根據摺紙作圖的數學理論,發展6個摺紙動作,以作為學習尺規作圖的過渡性工具,此6個動作為「摺出通過兩點的直線」、「從直線上一點作垂線」、「從直線外一點作垂線」、「在直線上取等線段長」、「將兩點重合」與「將兩直線重合」,教學對象為台北市某國中3位國三學生,挑選的判準為該生的「尺規作圖試題」總得分為全體受測學生的後四分之一,此3位學生接受4天共計6小時的教學。
    本研究的主要研究結果如下:
    (一)關於國三學生的尺規作圖學習表現:
    1. 學生不清楚尺規作圖的工具使用規定。
    2. 學生不熟練基本尺規作圖步驟,不清楚該等作圖步驟與幾何性質之間的關係。
    3. 學生在應用尺規作圖解決作圖問題方面有困難。
    (二)關於透過摺紙學習尺規作圖的成效:
    1. 摺紙能幫助學生熟練基本尺規作圖步驟,理解作圖步驟所應用的對稱性質。
    2. 摺紙能幫助學生分析作圖問題,檢驗想法的正確性,找出正確的作圖步驟。
    3. 摺紙能提升學生尺規作圖學習興趣。
    根據研究結果,本研究建議教師教學時應強調尺規作圖的工具使用方式,可讓學生先利用摺紙解決作圖問題,再將摺紙動作一一轉換成尺規作圖作法。未來研究建議擴大樣本數,進一步探討摺紙對中、高程度學生學習尺規作圖的成效。

    It is common knowledge that many students encountered difficulties in learning geometric construction. This study develops a creative teaching method to learn construction that makes use of the intuitive origami experience of students. There are two purposes in this study. The first is to survey ninth graders’ learning performances in geometric construction. The second is to explore the effectiveness of ninth grade low achievers in learning geometric construction through origami.
    This study is divided into two parts. The first part is a survey research. A total of 150 ninth graders’ in Taipei area filled out a questionnaire on geometric construction. Their performances are then analyzed and reported herein. The second part consists of an innovative teaching experiment. Following the mathematical principles of geometry construction through origami, this author designs six origami operations to serve as the transitional stage to geometric construction. They are organized into four lessons that require six hours of instruction. Their effectiveness is studied by way of a teaching experiment on three ninth grade low achievers in math from the Taipei area.
    The following results were obtained:
    1. Some students did not know that geometric construction were restricted to the use of only a straightedge and compass.
    2. Students were awkward with basic geometric construction, and did not understand the relationship between construction procedures and their underlying geometric properties.
    3. Students did not do well in solving geometric construction problems.
    4. Origami helped students to be proficient in basic geometric constructions.
    5. Origami enabled students to analyze geometric construction problems and to find out the correct construction sequences.
    6. Origami enhanced students’ interest in learning geometric construction.
    Based on the results of this study, the following suggestions are provided for consideration in future instruction of geometric construction. First, teachers should emphasize on the basic rules of geometric constructions. Second, teachers can motivate students to solve construction problems through origami, and then translate the origami operations back into geometric construction procedures.

    第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的 5 第三節 研究問題 5 第四節 名詞界定 6 第五節 研究限制 7 第貳章 文獻探討 8 第一節 尺規作圖 8 第二節 摺紙在數學學習中的應用 11 第三節 摺紙作圖的數學理論 13 第參章 研究方法 23 第一節 研究設計 23 第二節 研究對象 25 第三節 研究工具 28 第四節 研究流程 51 第肆章 資料分析 52 第一節 「尺規作圖試題」表現 52 第二節 參與補救教學三位學生的前、後測表現 69 第三節 摺紙對學生解決尺規作圖問題的幫助 85 第四節 透過摺紙活動進行尺規作圖補救教學的效果 96 第伍章 討論與建議 99 第一節 學生尺規作圖學習表現 99 第二節 透過摺紙活動進行尺規作圖補救教學之成效 100 第三節 建議 102 參考文獻 105 附錄 109 附錄一:尺規作圖試題 109 附錄二:尺規作圖試題評分方式 119 附錄三:補救教學課程6個摺紙動作的作圖能力等價於尺規作圖的證明 127 附錄四:補救教學第一天學習單 131 附錄五:透過摺紙活動學習尺規作圖之效果調查問卷 139

    中文部分
    教育部 (民92)。國民中小學九年一貫課程綱要數學領域。台北市:教育部。
    葉福進 (民94)。國三學生利用三種不同構圖工具進行構圖活動的表現之探討。台灣師範大學數學系在職進修碩士班碩士論文,未出版,台北市。
    劉繕榜 (民88)。國中數學資優生尺規作圖表現之探討。台灣師範大學科學教育研究所碩士論文,未出版,台北市。
    謝豐瑞 (民83)。使幾何教學活潑化-摺紙及剪紙篇。科學教育月刊, 171, 29-41.

    英文部分
    Alperin, R. C. (2000). A mathematical theory of origami constructions and numbers. New York Journal of Mathematics, 6(1), 119-133.
    Auckly, D., & Cleveland, J. (1995). Totally real origami and impossible paper folding. The American Mathematical Monthly, 102(3), 215-226.
    Austin, J. D. (1982). Constructions with an unmarked protractor. Mathematics Teacher, 75(4), 291-295.
    Bogomolny, A. (2009). Paper folding geometry from interactive mathematics miscellany and puzzles. Retrieved 7, 2009, from http://www.cut-the-knot.org/pythagoras/PaperFolding/index.shtml.
    Brown, R. G. (1982). Making geometry a personal and inventive experience. Mathematics Teacher, 75(6), 442-446.
    Carter, J. A., & Ferrucci, B. J. (2003). A survey of paper cutting, folding and tearing in mathematics textbooks for prospective elementary school teachers. Focus on Learning Problem in Mathematics, 25(1), 43-60.
    Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
    Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children's solutions to paper folding tasks. Journal of Mathematics Behavior, 25(1), 46-56.
    Eves, H. (1968). A survey of geometry (Vol. 1). Boston: Allyn and Bacon.
    Franco, B.(1999). Unfolding mathematics with unit origami. CA: Key Curriculum Press.
    Geretschlager, R. (1995). Euclidean constructions and the geometry of origami. Mathematics Magazine, 68(5), 357-371.
    Gibb, A. A. (1982). Giving geometry students an added edge in constructions. Mathematics Teacher, 75(4), 288-290.
    Higginson, W., & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349.
    Hull, T. (1996). A note on "impossible" Paper folding. The American Mathematical Monthly, 103(3), 240-241.
    Johnson, D. A. (1957). Paper folding for the mathematics class. Reston: National Council of Teachers of Mathematics.
    Kramer, E., Hadas, N., & Hershkowitz, R. (1986). Geometrical constructions and the microcomputer. Paper presented at the International Conference for the Psychology of Mathematics Education (10th), London.
    Lang, R. J. (2003). Origami and geometric constructions. Retrieved 3, 2008, from http://www.langorigami.com/science/hha/origami_constructions.pdf
    Lim, S. K. (1997). Compass constructions: A vehicle for promoting relational understanding and higher order thinking skills. The Mathematics Educator, 2(2), 138-147.
    Maida, P. (2005). Edible reflective symmetry. Mathematics Teaching, 192, 30-34.
    Martin, G. E. (1997). Geometric Constructions. New York: Springer.
    McClintock, R. M. (1997). The pyramid question: A problem-solving adventure. Mathematics Teacher, 90(4), 262-268.
    National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
    Olson, A. T. (1975). Mathematics through Paper Folding. Reston: National Council of Teachers of Mathematics.
    Pagni, D. (2007). Paper folding fractions. Australian Mathematics Teacher, 63(4), 37-40.
    Pagni, D., & Espinoza, L. (2001). Angle limit--A paper-folding investigation. Mathematics Teacher, 94(1), 20-22.
    Pandisico, E. A. (2002). Alternative geometric constructions: Promoting mathematical reasoning. The Mathematics Teacher, 95(1), 32-36.
    Perks, P., & Prestage, S. (2006a). The ubiquitous isosceles triangle: Part 1-Constructions. Mathematics in School, 35(1), 2-3.
    Perks, P., & Prestage, S. (2006b). The ubiquitous isosceles triangle: Part 2-Circles. Mathematics in School, 35(2), 27-29.
    Perks, P., & Prestage, S. (2006c). The ubiquitous isosceles triangle: Part 3-From paper folding to. Mathematics in School, 35(3), 9-11.
    Pope, S. (2002). The use of origami in the teaching of geometry. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 67-73.
    Robertson, J. M. (1986). Geometric Constructions Using Hinged Mirrors. Mathematics Teacher, 79(5), 380-386.

    Row, S. (1941). Geometric exercises in paper folding (W. W. Beman & D. E. Smith, Trans. 4th ed.). Chicago: Paquin Printers.(Original work published 1983)
    Scher, D. P. (1996). Folded paper, dynamic geometry, and proof: A three-tier approach to the conics. The Mathematics Teacher, 89(3), 188-193.
    Schoenfeld, A. H. (1989). Explorations of students' mathematical beliefs and behavior. Journal for research in mathematics education, 20(4), 338-355.
    Serra, M. (2003). Discovering geometry : an investigative approach. CA: Key Curriculum Press.
    Sinicrope, R., & Mick, H. W. (1992). Multiplication of Fractions through Paper Folding. Arithmetic Teacher, 40(2), 116-121.
    Smart, J. R. (1988). Modern Geometries (3rd ed.). Calif: Brooks/Cole Pub.
    Wood, D. A. (1993). Constructions with obstructions involving arcs. The Mathematics Teacher, 86(5), 360-363.
    Yates, R. C. (1949). Geometrical tools. A mathematical sketch & model book. Saint Louis: Educational Publishers.
    Yuzawa, M., Bart, W. M., Kinne, L. J., Sukemune, S., & Kataoka, M. (1999). The effect of "origami" practice on size comparison strategy among young Japanese and American children. Journal of Research in Childhood Education, 13(2), 133-143.

    下載圖示
    QR CODE