研究生: |
陳逸修 Chen, Yi-Hsiu |
---|---|
論文名稱: |
利用不同形狀金/銀奈米顆粒製備Langmuir-Blodgett薄膜及螢光增強測試 Fabrication of Langmuir-Blodgett films using gold/silver nanoparticles with different shapes for plasmon-enhanced fluorescence |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 金奈米棒 、金/銀-核/殼奈米長方體 、金棒-金銀合金奈米搖鈴型結構 、金屬螢光增強 、Langmuir – Blodgett |
英文關鍵詞: | Gold Nanorods, Au@Ag Nanocuboids, Gold/Silver Nanorattles, Metal-Enhanced Fluorescence, Langmuir-Blodgett |
DOI URL: | http://doi.org/10.6345/NTNU201900346 |
論文種類: | 學術論文 |
相關次數: | 點閱:246 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬螢光增強(Metal-Enhanced Fluorescence,MEF)應用於生物傳感器已經有了許多深入的研究,其設計了各種金屬奈米結構來改變近場的電磁場強度,以用來增強鄰近分子的螢光強度。金屬奈米結構,例如金和銀等材料對螢光有著強烈的影響,像是金屬奈米材料可以與近端螢光團相互作用可以增加其量子產率、降低螢光生命週期、增加光穩定性和增加螢光共振能量轉移的距離等等,通常兩者距離約在10nm時有最佳螢光增強效果。在本實驗中透過製備金奈米棒、金/銀-核/殼奈米長方體結構及金-金銀合金奈米搖鈴型結構,且以Langmuir-Blodgett (LB)將金屬奈米材料沉積在金島狀及羧酸化玻璃片的兩種基板上。用四種不同的壓力控制奈米材料在基板上的密度,分別為5mN/m、8mN/m、14mN/m、17mN/m。使用Cy5、IR800這兩種螢光染劑觀察金屬螢光增強現象。發現了5mN/m-金/銀-核/殼結構-羧酸化玻璃-IR800有著最高的螢光倍率,其螢光增強倍率可達177倍。期望在未來能應用於生化檢測。
Metal enhanced fluorescence (MEF) has been intensively applied in the field of fluorescence-based biosensing. Various metal nanostructures have been developed to increase the fluorescence intensities by placing the fluorophores within the enhanced electromagnetic field at the near-field range. Metal nanomaterials, such as gold and silver, have been demonstrated a strong influence on fluorescence. Metal nanostructures can interact with the proximal fluorophores to increase quantum yield, reduce fluorescence lifetime, increase photostability, and increase the distance of fluorescence resonance energy transfer. Generally, when the distance between the metal surface and fluorophore is about 10 nm, fluorescence intensities show the best enhancement. In this study, we utilized the Langmuir-Blodgett (LB) technique to deposit three different nanoparticles, including gold nanorods, Au@Ag core-shell nanocuboids and Au-Ag nanorattles, on two kinds of substrates (gold nanoisland films and carboxylated polysine slides (glass)). Four different pressures (5 mN/m, 8 mN/m, 14 mN/m and 17 mN/m) were controlled to manipulate the particle densities on the prepared metal films. Further, for the fluorescence enhancement, Cy5 and IR800 fluorescent dyes were used as the fluorophores to calculate their enhancement factors. The highest fluorescence enhancement of 177-fold was obtained for IR800 dyes, when the substrate was prepared by depositing Au@Ag core-shell nanocuboids on the glass substrate at a pressure of 5 mN/m. The promising fluorescence enhancement showed the potential for the application of biochemical detection.
1. Di Fabrizio, E.; Schlücker, S.; Wenger, J.; Regmi, R.; Rigneault, H.; Calafiore, G.; West, M.; Cabrini, S.; Fleischer, M.; Van Hulst, N. F., Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics 2016, 18 (6), 063003.
2. Levene, M. J.; Korlach, J.; Turner, S. W.; Foquet, M.; Craighead, H. G.; Webb, W. W., Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations. Science 2003, 299 (5607), 682-686.
3. Ray, K.; Badugu, R.; Lakowicz, J. R., Distance-Dependent Metal-Enhanced Fluorescence from Langmuir−Blodgett Monolayers of Alkyl-NBD Derivatives on Silver Island Films. Langmuir 2006, 22 (20), 8374-8378.
4. Li, M.; Cushing, S. K.; Wu, N., Plasmon-enhanced optical sensors: a review. Analyst 2015, 140 (2), 386-406.
5. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 2008, 133 (10), 1308-1346.
6. Zenin, V. A.; Andryieuski, A.; Malureanu, R.; Radko, I. P.; Volkov, V. S.; Gramotnev, D. K.; Lavrinenko, A. V.; Bozhevolnyi, S. I., Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano letters 2015, 15 (12), 8148-8154.
7. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D., Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. Journal of fluorescence 2005, 15 (5), 643.
8. Govorov, A.; Martínez, P. L. H.; Demir, H. V., Understanding and Modeling Förster-type Resonance Energy Transfer (FRET): Introduction to FRET. Springer: 2016; Vol. 1.
9. Jeong, Y.; Kook, Y. M.; Lee, K.; Koh, W. G., Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018, 111, 102-116.
10. Willets, K. A.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
11. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature Materials 2008, 7, 442.
12. Huang, X.; El-Sayed, M. A., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of advanced research 2010, 1 (1), 13-28.
13. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials 2009, 21 (48), 4880-4910.
14. Sharma, V.; Park, K.; Srinivasarao, M., Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports 2009, 65 (1), 1-38.
15. Hutter, E.; Fendler, J. H., Exploitation of Localized Surface Plasmon Resonance. Advanced Materials 2004, 16 (19), 1685-1706.
16. Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry 2000, 19 (3), 409-453.
17. and, S. L.; El-Sayed, M. A., Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annual Review of Physical Chemistry 2003, 54 (1), 331-366.
18. Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H., A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods. ACS Nano 2008, 2 (4), 687-692.
19. Huang, H.; He, C.; Zeng, Y.; Xia, X.; Yu, X.; Yi, P.; Chen, Z., A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics 2009, 24 (7), 2255-2259.
20. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 2014, 195, 332-351.
21. Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y., Gold Nanomaterials at Work in Biomedicine. Chemical Reviews 2015, 115 (19), 10410-10488.
22. Lin, M.; Wang, D.; Liu, S.; Huang, T.; Sun, B.; Cui, Y.; Zhang, D.; Sun, H.; Zhang, H.; Sun, H.; Yang, B., Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS Applied Materials & Interfaces 2015, 7 (37), 20801-20812.
23. Watt, J.; Hance, B. G.; Anderson, R. S.; Huber, D. L., Effect of Seed Age on Gold Nanorod Formation: A Microfluidic, Real-Time Investigation. Chemistry of Materials 2015, 27 (18), 6442-6449.
24. Laramy, C. R.; Lopez-Rios, H.; O’Brien, M. N.; Girard, M.; Stawicki, R. J.; Lee, B.; de la Cruz, M. O.; Mirkin, C. A., Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA. ACS Nano 2019, 13 (2), 1412-1420.
25. Khanal, B. P.; Zubarev, E. R., Chemical Transformation of Nanorods to Nanowires: Reversible Growth and Dissolution of Anisotropic Gold Nanostructures. ACS Nano 2019, 13 (2), 2370-2378.
26. Morales-Vidal, J.; López, N.; Ortuño, M. A., Chirality Transfer in Gold Nanoparticles by l-Cysteine Amino Acid: A First-Principles Study. The Journal of Physical Chemistry C 2019, 123 (22), 13758-13764.
27. Schmutzler, T.; Schindler, T.; Zech, T.; Lages, S.; Thoma, M.; Appavou, M.-S.; Peukert, W.; Spiecker, E.; Unruh, T., n-Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. ACS Applied Nano Materials 2019, 2 (5), 3206-3219.
28. Mohammadi, F.; Sahraei, A.; Li, C.; Haustrate, A.; Lehen’kyi, V. y.; Barras, A.; Boukherroub, R.; Szunerits, S., Interaction of Human α-1-Acid Glycoprotein (AGP) with Citrate-Stabilized Gold Nanoparticles: Formation of Unexpectedly Strong Binding Events. The Journal of Physical Chemistry C 2019, 123 (8), 5073-5083.
29. Fleury, B.; Cortes-Huerto, R.; Taché, O.; Testard, F.; Menguy, N.; Spalla, O., Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. Nano Letters 2015, 15 (9), 6088-6094.
30. Vassalini, I.; Rotunno, E.; Lazzarini, L.; Alessandri, I., “Stainless” Gold Nanorods: Preserving Shape, Optical Properties, and SERS Activity in Oxidative Environment. ACS Applied Materials & Interfaces 2015, 7 (33), 18794-18802.
31. Moussawi, R. N.; Patra, D., Synthesis of Au Nanorods through Prereduction with Curcumin: Preferential Enhancement of Au Nanorod Formation Prepared from CTAB-Capped over Citrate-Capped Au Seeds. The Journal of Physical Chemistry C 2015, 119 (33), 19458-19468.
32. Lu, L.; Xia, Y., Enzymatic Reaction Modulated Gold Nanorod End-to-End Self-Assembly for Ultrahigh Sensitively Colorimetric Sensing of Cholinesterase and Organophosphate Pesticides in Human Blood. Analytical Chemistry 2015, 87 (16), 8584-8591.
33. Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V., Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews 2017, 117 (20), 12942-13038.
34. Hou, S.; Hu, X.; Wen, T.; Liu, W.; Wu, X., Core–Shell Noble Metal Nanostructures Templated by Gold Nanorods. Advanced Materials 2013, 25 (28), 3857-3862.
35. Park, K.; Drummy, L. F.; Vaia, R. A., Ag shell morphology on Au nanorod core: Role of Ag precursor complex. Journal of Materials Chemistry 2011, 21 (39), 15608-15618.
36. Khlebtsov, B. N.; Liu, Z.; Ye, J.; Khlebtsov, N. G., Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. Journal of Quantitative Spectroscopy and Radiative Transfer 2015, 167, 64-75.
37. Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L. M., Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. Journal of the American Chemical Society 2016, 138 (36), 11453-11456.
38. Rozin, M. J.; Rosen, D. A.; Dill, T. J.; Tao, A. R., Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared. Nature Communications 2015, 6, 7325.
39. Hussain, S. A.; Dey, B.; Bhattacharjee, D.; Mehta, N., Unique supramolecular assembly through Langmuir – Blodgett (LB) technique. Heliyon 2018, 4 (12), e01038.
40. Alkilany, A. M.; Thompson, L. B.; Murphy, C. J., Polyelectrolyte coating provides a facile route to suspend gold nanorods in polar organic solvents and hydrophobic polymers. ACS applied materials & interfaces 2010, 2 (12), 3417-3421.
41. Li, K.; Li, X.; Lei, D. Y.; Wu, S.; Zhan, Y., Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Applied Physics Letters 2014, 104 (26), 261105.