簡易檢索 / 詳目顯示

研究生: 林弼玉
論文名稱: 以巨噬細胞株為模式探討苦瓜中影響前列腺素E2合成之區分物
Investigation of bitter gourd Fractions with inhibitory effect on Prostaglandin E2 Production in Macrophage Cell Line
指導教授: 吳文惠
Lyu, Li-Ching
黃青真
Huang, Ching-Jang
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: Momordica charantina L.RAW264.7PGE2Anti-inflammatory
英文關鍵詞: Momordica charantina L., RAW264.7, PGE2, Anti-inflammatory
論文種類: 學術論文
相關次數: 點閱:193下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發炎反應與多種疾病的病程進展及組織損傷密切相關,抗發炎作用的相關因
    此具有相當的重要性,也受到學界之重視。已知發炎過程中,涉及巨噬細胞的活
    化,誘發COX-2 表現,主導PGE2的合成。PGE2為巨噬細胞主要產生的前列腺素,
    為一重要促發炎介質。因此,透過降低發炎介質PGE2的合成,應可減輕發炎所產
    生不適症狀,乃成為抗發炎藥物研發之目標。而研究中發現:以LPS誘發巨噬細胞
    株表現COX-2 及生成PGE2下,苦瓜萃取物具有抑制PGE2生成的效應。因此,推測
    苦瓜萃取物中可能含有抑制發炎反應的成分。故本研究擬以LPS活化之巨噬細胞為
    模式,透過對萃及管柱層析等化學分離的方式,追蹤山苦瓜中能抑制PGE2合成的
    區分物,以進一步分離並鑑定山苦瓜中具有此活性的成分。
    將苦瓜以水萃取,渣再以乙酸乙酯萃取,兩種萃取物均有抑制活性,其中以
    乙酸乙酯萃取物較高。將山苦瓜全果凍乾,以乙酸乙酯萃取;萃取物之抑制活性
    可以正己烷對萃而得。正己烷區分物以矽膠層析,從100%正己烷逐漸增高極性至
    100%乙酸乙酯沖提,而後再以90%乙酸乙酯與10%甲醇之混合溶劑沖提,可沖提
    出活性最佳的區分物Fraction190。此區分物再經矽膠管柱層析,以氯仿/甲醇(6/1)
    流洗,可分離出具活性之區分物F1-6。將F1-6 再度以矽膠管柱層析二次,所得之
    活性區分物再以逆相管柱層析,得活性區分物RP-10,具極佳之抑制活性,IC50為
    2.31µg/mL。以NMR、IR及H-H Cosy化學鑑定之結果為:含中短鏈脂肪酸之三酸甘
    油酯。而將F1-6 水解後,尚可鑑定出當中含有:八碳雙酸、九碳雙酸及十碳雙酸。
    此外,以3-20 碳之脂肪酸標準品測試發現:十碳之Capric acid (C10:0)具有最好的
    抑制活性,50µM可達到完全抑制,IC50為6.46µM (1.216µg/mL)。八碳及九碳雙酸
    標準品亦有部份抑制活性,但不如10 碳脂肪酸。富含中鏈脂肪酸之MCT oil經測
    試亦有部份抑制活性。
    綜此,推測山苦瓜中具有抑制巨噬細胞PGE2合成的可能成分為:酯化型中短
    鏈飽和脂肪酸或雙酸。而山苦瓜中乙酸乙酯萃物或其他活性區分物中仍可能存在
    其他具有活性的成分。

    Researches on the anti-inflammation have attached great attention in recent years,
    since inflammation was recognized as a major cause of tissue damage through the
    progression of many diseases. Activation of macrophages and the induced expression of
    COX-2 that increases PGE2 production play an important role in the inflammatory
    process. PGE2 is the major prostaglandin produced by macrophages and is a
    well-known pro-inflammatory mediator. Inhibition of the production of PGE2 is
    regarded as a major approach to ameliorate the inflammatory symptoms. It was reported
    that bitter gourd extract could inhibit the PGE2 production of the LPS activated murine
    macrophage cell line. This study is therefore aimed at identifying fractions and
    compounds isolated from bitter gourd extract, which have inhibitory effect on PGE2
    production in the LPS activated RAW264.7 cell line.
    The whole bitter gourd (Momordica charantia L.) was extracted with water and
    the water-insoluble residue was further extracted with ethyl acetate (EA). Both of water
    and EA extracts had inhibitory activity, and the ethyl acetate extract (EAE) had higher
    activity than water extract. The whole bitter gourd was freeze-dried and directly
    extracted by EA. The EAE was partitioned by n-hexane and 90%MOH+10%H2O. The
    n-hexane fraction had inhibitory activity and was further separated by silica gel column
    chromatography, successively eluted with solvents of increasing polarity (100%
    n-hexane to 100% EA and then with 90% EA+10%MeOH finally). The fraction 190
    eluted by 90% EA+10%MeOH showed the highest inhibitory activity. The fraction 190
    was further separated by silica gel column chromatography, eluted with
    chloroform/MeOH (6/1) and the fraction F1-6 obtained showed higher inhibitory
    activity. The F1-6 fraction was further separated by silica gel column chromatography
    twice to obtain the active fraction. And the active fraction was further separated by
    RP-18 column chromatography to obtain the RP-10 which had the best inhibitory
    activity (IC50=2.31µg/mL). The RP-10 was identified as triacylglycerol (TG)
    constituted of short and medium chain fatty acids identified by NMR, IR and H-H Cosy.
    To verify the components identified from the n-hexane fraction of the whole bitter
    gourd were TG containing short and medium chain fatty acids, the F1-6 was further
    hydrolyzed and extracted with EA, and the fatty acid compositions were determined by
    GC-mass. Octanedioic acid, nonanedioic acid and decanedioic acid were found. On the
    other hand, the fatty acids standards with 3-20 carbons were tested for the inhibitoryactivity and capric acid (C10:0) was found to possess the highest inhibitory activity.
    50µM of it almost completely inhibited PGE2 production in this cell system
    (IC50=6.46µM or 1.216µg/mL). The octanedioic acid and nonanedioic acid also had
    inhibitory activity but were inferior to capric acid. In addition, the MCT oil containing
    mainly C8 and C10 fatty acids also showed partial inhibitory activity.
    In conclusion, the ester forms of short and medium chain saturated fatty acids or
    dicarboxylic acids in the n-hexane fraction of the whole bitter gourd were identified as
    components with activity of inhibiting the PGE2 production in the LPS activated
    RAW264.7 cell line. Other components from the EA partitioned fraction may also have
    activity and need further investigation.

    第一章緒言……………………………………………………………1 第一節前言……………………………………………….…………….……………1 第二節文獻回顧…………………………………………………………..…………2 一前列腺素E2 (PGE2)的介紹………………………………...…………………..2 (一) 前列腺素E2 (PGE2) 的生合成…………………………………….……...2 (二) 前列腺素合成酶(PGHS)……………………………..…………………...4 (三) 前列腺素E2 (PGE2) receptor………………………………………………8 (四) 前列腺素E2 (PGE2) 與發炎反應……………………………..…………..8 (五) 前列腺素E2 (PGE2)與細胞激素(Cytokine)……………………………...10 二巨噬細胞的介紹…………………..…………………………………………..13 (一) 巨噬細胞的活化……………………………………………………….….13 (二) 脂多醣類(LPS:Lipopolysaccharide)的結構………………………….…14 (三) LPS 活化巨噬細胞的傳訊路徑…………………………………………...15 三苦瓜的介紹………………………………………………………………..…..18 (一) 苦瓜的背景……………………………………………………...………...18 (二) 山苦瓜之簡介………………………………………………..……………18 (三) 苦瓜的特性………………………………………………………………..18 (四) 苦瓜及山苦瓜的營養成分………………………………………………..19 (五) 苦瓜之生理功效…………………………………………………………..19 第三節動機與目的………………………..…………………………………………21 第二章材料與方法……………………...……………...……………..22 第一節前言………………………………………………………………………….22 第二節山苦瓜之區分……………………………………………………………....22 一山苦瓜全果水溶性及水不溶性部分…………………………………………22 二山苦瓜乙酸乙酯萃物(EAE)對萃分離………………………………………..23 三山苦瓜Hexane 區分物以矽膠管柱層析分離………………………………..24 四山苦瓜大量萃取分離…………………………………………………………26 五活性區分物再層析分離………………………………………………………28 (一) Fraction189 ~ 191 純化分離………………………………………………28 (二) Fraction151 ~ 158 純化分離………………………………………………37 六脂肪酸甲基酯化法(Diazomethane 法)………………………………………..42 七光譜鑑定及儀器設備…………………………………………………………42 第三節生物活性分析................................................43 一.細胞培養系統的建立………………………………………………………….43 二山苦瓜區分物之活性分析……………………………………………………44 三測試脂肪酸標準品之活性……………………………………………………45 四細胞存活率(MTT)之測定…………………………………………………….47 五前列腺素(PGE2)之測定………………………………………………………47 六統計分析………………………………………………………………………49 七Maximun inhibition(%)及IC50的計算……………………………………….49 第三章結果………………………………………………………….….50 第一節RAW264.7 細胞培養條件的建立…………………………………….…..50 一LPS刺激PGE2生成的時程………………………………………………...50 二LPS刺激PGE2生成的劑量………………………………………………….50 第二節實驗樣品的處理對RAW264.7 細胞生成PGE2的影響………………..50 一樣品對細胞存活的影響……………………………………………………..50 二山苦瓜水溶性及水不溶性部分………………………………………………50 三山苦瓜乙酸乙酯萃物(EAE)對萃分離………………………………………..51 四山苦瓜Hexane 區分物以矽膠管柱層析分離………………………………..51 五山苦瓜大量萃取分離…………………………………………………………60 六活性區分物再層析分離………………………………………………………62 (一) Fraction189 ~ 191 純化分離………………………………………………62 (二) Fraction151 ~ 158 純化分離………………………………………………62 七測試脂肪酸標準品之活性……………………………………………………71 第四章討論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76 第一節山苦瓜中活性成分的萃取與分離⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76 第二節脂肪酸及雙酸對PGE2合成的影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯77 第三節展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81 總結⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82
    QR CODE