研究生: |
王亮傑 Wang, Liang-Chieh |
---|---|
論文名稱: |
臺灣地區降雨模擬的動力與統計降尺度的比較與分析 Comparison and analysis between dynamical and statistical downscaling of rainfall distribution in Taiwan |
指導教授: |
陳正達
Chen, Cheng-Ta |
口試委員: |
陳正達
Chen, Cheng-Ta 鄭兆尊 Cheng, Chao-Tsun 王重傑 Wang, Chung-Chieh 洪志誠 Hong, Chi-Cherng |
口試日期: | 2024/06/21 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 統計降尺度 、動力降尺度 、極端降雨 、降尺度比較 |
英文關鍵詞: | statistical downscaling, dynamical downscaling, extreme rainfall, downscaling comparison |
研究方法: | 次級資料分析 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202401451 |
論文種類: | 學術論文 |
相關次數: | 點閱:40 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過往直接比較動力降尺度與統計降尺度的研究較少,大部分研究進行降尺度比較或評估時,通常是以實際的觀測資料為基準,評估各個降尺度方法。
動力降尺度方法藉由趨近真實世界的資料提高氣候模式的解析度,獲得高解析度的氣候推估資料,運算出的結果能呈現不同地理與氣候特徵。統計降尺度方法則利用過往的觀測資料與氣候模式模擬資料,以回歸和統計分析方法建立兩者之間的統計關係。相較於動力降尺度方法,在電腦計算的要求相對較低,方法上也更加簡單;但是統計降尺度模擬的結果沒有辦法呈現物理過程,並且缺乏適合的物理解釋,應用時需要假設未來的氣候特徵在統計上是穩定的;然而近年來氣候變遷影響下,這個統計穩定的假設通常是無法滿足且無法證明。對此本研究以「理想模式」作為實驗架構,使用動力降尺度資料代替降尺度中的觀測資料,驗證統計降尺度方法,並以全球高解析度模式資料作為參考,比較動力與統計降尺度在不同季節、極端降雨之降尺度成效。
研究結果顯示統計降尺度在梅雨和夏季容易受到高解析度模式資料影響,與動力降尺度差異較大,而統計降尺度與動力降尺度在冬季較為接近;然而,極端降雨主要集中在梅雨和夏季,對於系統性降雨如颱風、梅雨等,統計降尺度與動力降尺度具有接近表現,但它依然受模式資料影響為主;極端降雨能觀察到冬季的成效比梅雨和夏季高,趨近動力降尺度的比例相比所有天數降低。
There have been few studies that directly compared dynamical downscaling and statistical downscaling in the past. When most studies conduct downscaling comparisons or evaluations, they usually evaluate various downscaling methods based on actual observation data.
The dynamical downscaling method improves the resolution of climate models by approaching real-world data and obtains high-resolution climate estimation data. The calculated results can present different geographical and climate characteristics. The statistical downscaling method uses past observation data and climate model simulation data to establish the statistical relationship between regression and statistical analysis methods. Compared with the dynamical downscaling method, the computer calculation requirements are relatively low and the method is simpler. However, the results of statistical downscaling simulations can’t represent physical processes and lack suitable physical explanations. It is necessary to assume that future climate characteristics are statistically stable. Nevertheless, this assumption of statistical stability is often unsatisfied and cannot be proven under the influence of climate change in recent years. In this regard, this study uses the "perfect model" as the experimental framework. Dynamical downscaling data are used to replace the observation data in downscaling to verify the statistical downscaling method. We also use global high-resolution model data as a reference to compare the effect of dynamical and statistical downscaling in different seasons and extreme rainfall.
The research results show that statistical downscaling is easily affected by high-resolution model data during the Meiyu and summer periods, and is different from dynamical downscaling. Statistical downscaling and dynamical downscaling are relatively close in winter. Extreme rainfall is mainly concentrated in Meiyu and summer. For systematic rainfall such as typhoons, Meiyu, etc., statistical downscaling and dynamical downscaling have similar performances, but it’s still affected by model data. Extreme rainfall is more effective in winter than in Meiyu and summer. The proportion of approach dynamical downscaling decreases compared to all days.
林修立、童裕翔、王俊寓、林士堯. (2023年1月1日). AR6統計降尺度雨量資料生產履歷(1.0版). 擷取自 臺灣氣候變遷推估資訊與調適知識平台: https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220718101540.pdf
奚子泰. (2020). 台灣區域未來降雨推估的統計降尺度穩定性研究(未出版之碩士論文). 臺北市: 國立臺灣師範大學.
許晃雄、李威良、許乾忠、蔡宜君、杜佳穎、王懌琪、陳正平. (2018). 台灣氣候模擬系統-探索氣候的前世今生與來世. 科技部自然科學及永續研究發展處 自然科學簡訊, 18-23.
陳正昌. (2011). 氣候模式極端降雨指標的統計降尺度研究(未出版之碩士論文). 臺北市: 國立臺灣師範大學.
簡毓瑭,林士堯. (2021年9月15日). AR5 動力降尺度溫度資料生產履歷(4.0 版). 擷取自 臺灣氣候變遷推估資訊與調適知識平台: https://tccip.ncdr.nat.gov.tw/publish_01_data_profile_one.aspx?dp_id=20200117105849
蘇元風、劉俊志、鄭兆尊. (2014). 以動力降尺度資料評估氣候變遷下颱風降雨事件特性變異. 農業工程學報, 60(4), 48-60.
Alvich, J. (2016). HiRAM (HIgh Resolution Atmospheric Model). Retrieved from Geophysical Fluid Dynamics Laboratory (GFDL) - NOAA: https://www.gfdl.noaa.gov/hiram/
Barnston, A. G., Glantz, M. H., & He, Y. (1999). Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bulletin of the American Meteorological Society, 80(2), 217-244.
Bukovsky, M. S., & Karoly, D. J. (2009). Precipitation simulations using WRF as a nested regional climate model. Journal of applied Meteorology and Climatology, 48(10), 2152-2159.
Cannon, A. J. (2011). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & geosciences, 37(9), 1277-1284.
Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?. Journal of Climate, 28(17), 6938-6959.
Chen, J. H., & Lin, S. J. (2013). Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. Journal of Climate, 26(2), 380-398.
Dixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A., Radhakrishnan, A., ... & Gaitán, C. F. (2016). Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results? Climatic Change, 135, 395-408.
Fauzi, F., Kuswanto, H., & Atok, R. M. (2020). Bias correction and statistical downscaling of earth system models using quantile delta mapping (QDM) and bias correction constructed analogues with quantile mapping reordering (BCCAQ). In Journal of Physics: Conference Series (Vol. 1538, No. 1, p. 012050) IOP Publishing.
Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., & Rasmussen, R. M. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the U nited S tates. Water Resources Research, 50(9), 7167-7186.
Hidalgo, H. G., Dettinger, M. D., & Cayan, D. R. (2008). Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. California Energy Commission PIER Final Project Report CEC-500-2007-123.
Hunter, R. D., & Meentemeyer, R. K. (2005). Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology, 44(10), 1501-1510.
Hwang, S., & Graham, W. D. (2013). Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrology and Earth System Sciences, 17(11), 4481-4502.
Kitoh, A., Ose, T., Kurihara, K., Kusunoki, S., & Sugi, M. (2009). Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrological Research Letters, 3, 49-53.
Le Roux, R., Katurji, M., Zawar-Reza, P., Quénol, H., & Sturman, A. (2018). Comparison of statistical and dynamical downscaling results from the WRF model. Environmental modelling & software, 100, 67-73.
Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., & Cayan, D. R. (2010). The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences, 14(6), 1125-1138.
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., ... & Kitoh, A. (2012). Climate simulations using MRI-AGCM3. 2 with 20-km grid. 気象集誌. 第 2 輯, 90(0), 233-258.
Murdock, T. Q., Cannon, A. J., & Sobie, S. R. (2014). Statistical downscaling of future climate projections for North America. Report on Contract No: KM040-131148/A, Prepared for Environment Canada, Pacific Climate Impacts Consortium, Victoria, BC, Canada.
Putman, W. M., & Lin, S. J. (2007). Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics, 227(1), 55-78.
Schmidli, J., Frei, C., & Vidale, P. L. (2006). Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(5), 679-689.
Sobie, S. R., & Murdock, T. Q. (2017). High-resolution statistical downscaling in southwestern British Columbia. Journal of Applied Meteorology and Climatology, 56(6), 1625-1641.
Sobie, S. R., Hiebert, J., & Zwiers, F. (2014). Statistical downscaling of future climate projections for North America.
Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang, H. I., Mukherjee, R., & Demaria, E. (2017). Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrology and Earth System Sciences, 21(6), 2649-2666.
Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., & Wu, J. (2016). Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. Journal of Geophysical Research: Atmospheres, 121(5), 2110-2129.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of geophysical research: atmospheres, 106(D7), 7183-7192.
Taylor, K. E. (2005). Taylor diagram primer. Work. Pap, 1-4.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society, 93(4), 485-498.
Van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K., & Weyant, J. (2011). A special issue on the RCPs. Climatic Change, 109, 1-4.
Von Storch, H., Zorita, E., & Cubasch, U. (1993). Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. Journal of Climate, 6(6), 1161-1171.
Wang, Y., Sivandran, G., & Bielicki, J. M. (2018). The stationarity of two statistical downscaling methods for precipitation under different choices of cross‐validation periods. International Journal of Climatology, 38, e330-e348.
Welch, B. L. (1947). The generalization of ‘STUDENT'S’problem when several different population varlances are involved. Biometrika, 34(1-2), 28-35.
Werner, A. T., & Cannon, A. J. (2016). Hydrologic extremes–an intercomparison of multiple gridded statistical downscaling methods. Hydrology and Earth System Sciences, 20(4), 1483-1508.
Yang, Y., Tang, J., Xiong, Z., Wang, S., & Yuan, J. (2019). An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: present climate evaluations. Climate Dynamics, 53, 4629-4649.
Zhao, T., Bennett, J. C., Wang, Q. J., Schepen, A., Wood, A. W., Robertson, D. E., & Ramos, M. H. (2017). How suitable is quantile mapping for postprocessing GCM precipitation forecasts? Journal of Climate, 30(9), 3185-3196.