簡易檢索 / 詳目顯示

研究生: 蔡嘉琪
論文名稱: 以鈀誘發在Mo(111)表面上非晶鉬的皺化(112)面的大小與其厚度之關係
Pd-induced (112) facet size affected by the thickness of amorphous Mo layers predeposited on Mo(111).
指導教授: 張嘉升
Chang, Chia-Seng
傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 74
中文關鍵詞: 皺化面低能電子繞射儀掃描穿遂顯微鏡晶粒邊界亮度分析
英文關鍵詞: facet, LEED, STM, grain boundary, spot profile analysics
論文種類: 學術論文
相關次數: 點閱:479下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究的主要工作是利用低能電子繞射儀(LEED)與掃描式穿隧顯微鏡(STM)等常用之表面科學方法,來研究鈀(Pd)誘發在Mo(111)表面上非晶鉬的{112}皺化面的大小與其厚度的關係。已知鈀(Pd)覆蓋在鉬(Mo)或鎢(W)的bcc(111)表面上時,升溫會使表面能皺化形成各面方向{112}的金字塔狀。在Mo的(111)面上覆蓋大於1ML的鈀原子,經由約800K的加熱退火後,由STM觀察,發現金字塔的分佈大小不均勻。因此,本實驗利用在Mo基底上於90K的低溫下覆蓋不同厚度的Mo,Mo覆蓋層在90K的低溫下為非結晶狀物質,利用不同厚度的非晶鉬其晶粒邊界(grain boundary)的效應,來控制金字塔形成的大小與均勻度。首先,由LEED觀察皺化面的繞射圖形有無變化;接著,作皺化面之繞射點的亮度分析,求其半寬波高(half-width)來估計金字塔形成的最大寬度;最後,由STM觀察實際空間的分佈情況,並且驗證LEED亮度分析的準確度。

    Abstract

    Pd-induced (112) facet size affected by the thickness of amorphous Mo layers predeposited on Mo(111) has been observed using a scanning tunneling microscope (STM) and a low energy electron diffractometer (LEED). It has been found that the interaction of Pd ultrathin films with a body centered cubic Mo(111) surface, which is atomically rough and open, causes the Mo(111) substrate itself to reconstruct to form microscopic pyramids that expose facets oriented along {112} directions. The distribution of Pd-covered Mo(111) surface is not uniform upon annealing to 800 K. Mo coverage on Mo(111) at low temperature about 90 K is amorphous detected by LEED. To control the size of pyramids we use the effect of grain boundary at different thickness of amorphous. Based on LEED measurements and STM works. We can estimate the diameter of pyramids by measuring the ratio of half-width of spot profile of facets on the LEED pattern and identified by STM measurements.

    目錄 中文摘要 ………………………………………………………………Ⅰ 英文摘要 ………………………………………………………………Ⅱ 目錄 ……………………………………………………………………Ⅲ 第一章 緒論…………………………………………………………1 第二章 基本理………………………………………………………4 2-1 繞射強度 …………………………………………………………4 2-2 儀器限制 …………………………………………………………8 2-3 繞射球之繪造 ……………………………………………………12 2-4 結晶與非結晶 ……………………………………………………14 第三章 儀器介紹與工作原理 ……………………………………16 3-1 超高真空環境 ……………………………………………………16 3-1-1 超高真空系統裝置 ……………………………………………20 3-2 蒸鍍系統 …………………………………………………………22 3-2-1 Pd蒸鍍槍 ………………………………………………………22 3-2-2 電子束蒸鍍槍 …………………………………………………23 3-3 石英震盪測厚儀 …………………………………………………24 3-4 樣品準備 …………………………………………………………24 3-5 低能電子繞射儀 …………………………………………………26 3-5-1 基本原理 ………………………………………………………26 3-5-2 結構示意圖 ……………………………………………………28 3-5-3 LEED裝置的種類 ………………………………………………30 3-6 掃描式穿隧顯微鏡 ………………………………………………31 3-6-1 簡介 ……………………………………………………………31 3-6-2 基本原理 ………………………………………………………32 3-6-3 穿隧效應 ………………………………………………………33 3-6-4 工作原理 ………………………………………………………35 3-6-5 儀器架構 ………………………………………………………37 第四章 實驗步驟與結果 …………………………………………39 4-1 清潔樣品 …………………………………………………………39 4-2 刻度鈀薄膜的厚度 ………………………………………………45 4-3刻度鉬薄膜的厚度 ………………………………………………48 4-4 樣品的冷卻 ………………………………………………………50 4-5 鈀在非晶鉬下的成長 ……………………………………………52 4-5-1 繞射圖形的定性分析 …………………………………………56 4-5-2 繞射圖形的定量分析 …………………………………………61 第五章 結論 …………………………………………………………72

    第六章 參考資料

    [1] G. Ertl, J. Küppers, Low Energy Electron and Surface Chemistry, (1985).
    [2] J.C.Tracy and J. M. Blakely, Surf. Sci. 13, 313 (1968).
    [3] Ker-Jar Song, Cheng-Zhi Dong, and Theodore E. Madey, Langmuir 7, 3019 (1991).
    [4] Theodore E. Madey, J. Guan, C.-H. Nien, C.-Z. Dong, H.-S. Tao and R. A. Campbell, Surf. Rev. and Lett. 3, 1315 (1996).
    [5] Ker-Jar Song, J. C. Lin, M. Y. Lai, Y. L. Wang, Surf. Sci. 327, 17 (1995).
    [6] C.Z. Dong, S. M. Shivaprasad, K.-J. Song, and T. E. Madey, J. Chem. Phys. 99(11), 9172 (1993).
    [7] J. J. Kolodziej and T. E. Madey, J. W. Keister and J. E. Rowe, Phys. Rev. B 65, 075413 (2002).
    [8] N. J. Taylor, Surf. Sci. 2, 544 (1964).
    [9] Theodore E. Madey, Ker-Jar Song, Cheng-Zhi Dong and Richard A. Demmin, Surf. Sci. 247, 175 (1991).
    [10] F. Moresco, M. Rocca, T. Hildebrandt, M. Henzler, Surf. Sci. 463, 22 (2000).
    [11] C.-H. Nien and T. E. Madey, Y. W. Tai and T. C. Leung, J. G. Che and C. T. Chan, Phys. Rev. B 59, No15, 10335 (1999).
    [12] M. Henzler, Appl. Surf. Sci. 11/12, 450 (1982).
    [13] T.-M. Lu and M. G. Lagally, Surf. Sci. 99, 695 (1980).
    [14] K. D. Gronwald and M. Henzler, Surf. Sci. 117, 180 (1982).
    [15] M. Henzler, Surf. Rev. and Lett. 4, No. 3, 489 (1997).
    [16] Theodore E. Madey, Jie Guan, Cheng-Zhi Dong and S. M. Shivaprasad, Surf. Sci. 287/288, 826 (1993).
    [17] 蘇青森,真空技術,東華書局 (1999).
    [18] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,(1997).
    [19] Hans Luth, Surfaces and Interfaces of Solids, Berlin: Springer-,Verlag (1992).
    [20] Jie Guan, Robert A. Campbell, Theodore E. Madey, Surf. Sci. 341, 311 (1995).
    [21] O. Fruchart, S. Jaren, J. Rothman, Appl. Surf. Sci. 135, 218 (1998).
    [22] 鄭天佐,科儀新知,19,53 (1997).
    [23] 周亞謙,儀器總覽─表面分析儀器,39 (1998).
    [24] 黃英碩,張嘉升,科儀新知,21,36 (2000).
    [25] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1983).
    [26] M. A. Van Hove, W. H. Weinberg, and C. M. Chan, Low-Energy ElEctron Diffraction, Berlin: Springer-,Verlag (1986).

    QR CODE