簡易檢索 / 詳目顯示

研究生: 王雅甄
Wang, Ya-Chen
論文名稱: 利用密度泛函理論計算機理性探討二氧化碳還原反應在金銅合金與金銀合金之催化效果
Mechanism Study of CO2 Reduction Reaction on CuAu and CuAg Alloys by Density Functional Theory Calculation
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: 二氧化碳還原反應反應機理密度泛涵理論計算銅金合金銅銀合金
英文關鍵詞: Carbon dioxide reduction reaction, Reaction mechanism, Density functional theory (DFT) calculation, CuAu alloy, CuAg alloy
DOI URL: http://doi.org/10.6345/NTNU202001075
論文種類: 學術論文
相關次數: 點閱:160下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類文明快速發展,溫室問題已成為全球關注的重要問題。將二氧化碳轉化為可再生能源,可以緩和溫室效應加劇的速度。在本研究中,我們通過密度泛函理論(DFT)的計算,機理性探討轉化過程的基本反應:二氧化碳還原為一氧化碳。分析機制後發現,中間體COOH*和CO*的吸附以及其對應的吉布斯自由能是控制還原反應的關鍵:COOH*的吸附力更高,吉布斯自由能越低,有利於啟動CO2還原反應; CO*的吸附力越弱,吉布斯自由能越高,代表CO越容易被脫除,以完成整體的還原反應。銅具有前者的優勢,而金和銀具有後者的優勢。因此,期望金銅和金銀合金可以結合兩種金屬的特性,形成有利於COOH *吸附且擁有最佳還原活性的催化劑。合金上的吸附受電子結構和整體效應的影響,我們找出在銅核金殼/金核銅殼/銅核銀殼中的最佳合金比例為:CuAu6,AuCu16和CuAg7其中又以AuCu16最好。

    With the rapid development of human civilization, greenhouse problem become an important issue of global concern. Converting carbon dioxide into renewable energy resources is an effective way to resolve the detrimental problem. In the present study, we mechanistically examine the reduction reaction of carbon dioxide to carbon monoxide, the fundamental reaction for the converting process, by density functional theory (DFT) calculation. The resolved mechanism indicates that adsorption and the related Gibbs free energy of the two key intermediates COOH* and CO* control the reduction reaction: stronger adsorption of COOH* with lower Gibbs free energy to initiate the CO2 reduction and weaker adsorption of CO* with higher Gibbs free energy to remove the product of CO can essentially promote the reduction reaction. Copper has the advantage for the former adsorption, while gold and silver have those for the later one. Thus, the alloys of CuAu and CuAg are expected to benefit both adsorptions and achieve the best activity for the reduction reaction. The adsorptions on the alloys are affected by the electronic structural and ensemble effects. Accordingly, the best alloy ratios have been rationally determined: CuAu6, AuCu16 and CuAg7 are the optimal Cu-core/Au-shell, Au-core/Cu-shell and Cu-core/Ag-shell catalysts, respectively; among them AuCu16 is the best one.

    謝誌 i 摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1-1 Background 1 1-2 CO2 Reduction Reaction 2 1-3 Motivation 5 Chapter 2 Principle of Theoretical Calculation 6 2-1 Density Functional Theory 6 2-1-1 Hohenberg-Kohn theorem 6 2-1-2 Kohn-Sham equations 7 2-1-3 Exchange-correlation functional 8 2-2 Foundation Theory of Solid State Materials 9 2-2-1 Basis set 9 2-2-2 Pseudopotential 9 2-2-3 Bloch’s theorem 10 2-2-4 Self-consistent calculation 10 2-3 System Setting 11 2-3-1 VASP calculation setting 11 2-3-2 Computing system 13 2-4 Surface Structure 13 2-4-1 Pure Metal 13 2-4-2 CuAu 14 2-4-3 AuCu 16 2-4-4 CuAg 16 Chapter 3 Result and Discussion 17 3-1 Pure Metal 17 3-1-1 Adsorption 17 3-1-2 Charge density 19 3-1-3 Density of State state(DOS) 21 3-1-4 Free energy diagram 23 3-2 CuAu Alloy 24 3-2-1 Adsorption 24 3-2-2 Density of state(DOS) 30 3-2-3 Free energy diagram 35 3-3 AuCu Alloy 36 3-3-1 Adsorption 36 3-3-2 Density of state(DOS) 39 3-3-3 Free energy diagram 41 3-4 CuAg Alloy 43 3-4-1 Adsorption 43 3-4-2 Density of state(DOS) 45 3-4-3 Free energy diagram 47 3-5 Electron Localization Function(ELF) 48 3-5-1 Pure metal 48 3-5-2 Alloy 50 3-6 Bader Charge 51 3-6-1 Pure metal 51 3-6-2 Alloy 52 Chapert 4 Conclusions 53 References 55

    1. John-Paul Jones, G. K. Surya Prakash, George A. Olah, Isr. J. Chem. 2014, 54, 1451 -1466
    2. Jun-Hao Zhou, Ya-Wen Zhang, J. Name. 2013, 00, 1-3
    3. Douglas R. Kauffman, Dominic R. Alfonso, De Nyago Tafen, Congjun Wang, Yunyun Zhou, Yang Yu, Jonathan W. Lekse, Xingyi Deng, Vanessa Espinoza, Jamie Trindell, Oshadha K. Ranasingha, Amitava Roy, Jun-Sik Lee, Huolin L. Xin, J. Phys. Chem. C. 2018, 122, 27991-28000
    4. Yoshio HORI, Katsuhei KIKUCHI, Shin SUZUKI, Chem. Lett. 1985, 1695-1698.
    5. Hidetomo Noda, Shoichiro Ikeda, Yoshiyuki Oda, Kazumoto Imai, Masunobu Maeda, Kaname Ito, Bull. Chem. Soc. Jpn. 1990, 63, 2459-2462
    6. Hori Yoshio, Murata Akira, Kikuchi Katsuhei, Suzuki Shin, J. Chem. Soc. 1987, 728-729.
    7. Yixiong Yang, Michael G. White, Ping Liu, J. Phys. Chem. C. 2012, 116, 248-256
    8. Heine A. Hansen, Joel B. Varley, Andrew A. Peterson, Jens K. Nørskov, J. Phys. Chem. Lett. 2013, 4, 388-392
    9. A. Ruban , B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, Journal of Molecular Catalysis A: Chemical, 1997, 115, 421-429
    10. Kun Jiang, Priti Kharel, Yande Peng, Mahesh K. Gangishetty, Hao-Yu Greg Lin, Eli Stavitski, Klaus Attenkofer, Haotian Wang, ACS Sustainable Chem. Eng. 2017, 5, 8529-8534
    11. Leanne D. Chen, Makoto Urushihara, Karen Chan, Jens K. Nørskov, ACS Catal. 2016, 6, 7133-7139
    12. Cheonghee Kim, Taedaehyeong Eom, Michael Shincheon Jee, Hyejin Jung, Hyungjun Kim, Byoung Koun Min, Yun Jeong Hwang, ACS Catal. 2017, 7, 779-785
    13. L. C. Grabow and M. Mavrikakis, ACS Catal. 2011, 1, 365-384
    14. Kendra P. Kuhl, Etosha R Cave, David N. Abram, Thomas F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050-7059.
    15. Andrew A. Peterson Frank Abild-Pedersen, Felix Studt, Jan Rossmeisl, Jens K. Nørskov, Energy Environ. Sci., 2010, 3, 1311-1315
    16. Wenlei Zhu, Ronald Michalsky, Önder Metin,, Haifeng Lv, Shaojun Guo, Christopher J. Wright, Xiaolian Sun, Andrew A. Peterson, Shouheng Sun, J. Am. Chem. Soc. 2013, 135, 16833-16836
    17. Wenlei Zhu, Yin-Jia Zhang, Hongyi Zhang, Haifeng Lv, Qing Li, Ronald Michalsky, Andrew A. Peterson, Shouheng Sun, J. Am. Chem. Soc. 2014, 136, 16132-16135
    18. Seoin Back, Min Sun Yeom, Yousung Jung, ACS Catal. 2015, 5, 5089-5096
    19. Bokwon Yoon, Pekka Koskinen, Bernd Huber, Oleg Kostko, Bernd von Issendorff, Hannu Hȁkkinen, Michael Moseler, Uzi Landman, ChemPhysChem. 2007, 8, 157-161
    20. Hui-Yan Zhao, Hua Ning, Jing Wang, Xiu-Jie Su, Xin-Ge Guo, Ying Liu, Physics Letters A. 2010,374 1033-1038
    21. Yu-Chi Hsieh, Sanjaya D. Senanayake, Yu Zhang, Wenqian Xu, Dmitry E. Polyansky, ACS Catal. 2015, 5, 5349-5356
    22. Hemma Mistry, Rulle Reske, Zhenhua Zeng, Zhi-Jian Zhao, Jeffrey Greeley, Peter Strasser, Beatriz Roldan Cuenya, J. Am. Chem. Soc. 2014, 136, 16473-16476
    23. Kai Liu, Ming Ma, Longfei Wu, Marco Valenti, Drialys Cardenas-Morcoso, Jan P. Hofmann, Juan Bisquert, Sixto Gimenez, Wilson A. Smith, ACS Appl. Mater. Interfaces 2019, 11, 16546-16555
    24. Steen Lysgaard, Jón S. G. Mýrdal, Heine A. Hansen, Tejs Vegge, Phys. Chem. Chem. Phys., 2015, 17, 28270-28276
    25. Marwa Dhifallah, Adnene Dhouib, Sarah Aldulaijan, Francesco D.I. Renzo, Hazar Guesmi1, J.Chem.Phys.2016,145,024701
    26. Wenjin Zhu, Lei Zhang, Piaoping Yang, Congling Hu, Hao Dong, Zhi-Jian Zhao, Rentao Mu, Jinlong Gong, ACS Energy Lett. 2018, 3, 2144-2149
    27. Dohyung Kim, Chenlu Xie, Nigel Becknell, Yi Yu, Mohammadreza Karamad,Karen Chan, Ethan J. Crumlin, Jens K. Nørskov, Peidong Yang, J. Am. Chem. Soc. 2017, 139, 8329-8336
    28. Yin-Jia Zhang, Vijay Sethuraman, Ronald Michalsky, Andrew A. Peterson, ACS Catal. 2014, 4, 3742-3748
    29. Christopher J. Cramer, EssentialsofComputationalChemistry,2nd ed;John Wiley & Sons Ltd: England, 2002
    30. Payne, M C, Teter, M P, Allan, D C, Arias, T A, & Joannopoulos, J D. Rev. Mod. Phys. 64, 1045-1097.
    31. Wenlei Zhu, Ronald Michalsky, Önder Metin, Haifeng Lv, Shaojun Guo, Christopher J. Wright, Xiaolian Sun, Andrew A. Peterson, Shouheng Sun, J. Am. Chem. Soc. 2013, 135, 16833-16836
    32. Seoin Back, Jun-Hyuk Kim, Yong-Tae Kim, Yousung Jung, ACS Appl. Mater. Interfaces. 2016, 8, 23022-23027
    33. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Phys. Chem. B. 2004, 108, 17886-17892
    34. Peter Strasser, Shirlaine Koh, Toyli Anniye, Jeff Greeley, Karren More, Chengfei Yu, Zengcai Liu, Sarp Kaya, Dennis Nordlund, Hirohito Ogasawara, Michael F. Toney, Anders Nilsson, Nature Chemistry, 2, 454-460
    35. Marwa Dhifallah, Adnene Dhouib, Sarah Aldulaijan, Francesco D.I. Renzo, Hazar Guesmi, J. Chem. Phys. 145, 024701
    36. Myriam Sansa,Adnene Dhouib, Hazar Guesmi, J. Chem. Phys. 2014, 141, 064709
    37. W Tang , E Sanville, G Henkelman, J. Phys.: Condens. Matter. 2009, 21, 084204
    38. Edward Sanville, Steven D. Kenny, Roger Smith, Graeme Henkelman, J Comput Chem. 2007, 28, 899-908
    39. Graeme Henkelman, Andri Arnaldsson , Hannes Jónsson, Computational Materials Science.2006, 36, 354-360
    40. Min Yu and Dallas R. Trinkle, J. Chem. Phys. 2011, 134, 064111

    下載圖示
    QR CODE