簡易檢索 / 詳目顯示

研究生: 張宏圖
論文名稱: 5052-H32鋁合金電阻點銲拉剪強度之韋伯可靠度分析
指導教授: 呂傳盛
Lu, Chuan-Sheng
程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 5052-H32鋁合金電阻點銲拉剪強度韋伯可靠度
論文種類: 學術論文
相關次數: 點閱:280下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5052-H32鋁合金因其耐候性及適當的強度,應用於汽車的車殼鈑金,有其發展的有利條件。另外,臺灣的3C產業(電腦、通訊、消費性電子產品)蓬勃發展,5052-H32有重量輕、強度適當、不影響通訊及不導磁等特性,在應用的領域倍受青睞。
    本研究所使用的5052-H32鋁合金是屬於鋁-鎂合金(商用材),經過加工硬化及穩定處理,強度等級中等,配合單相交流點銲機實施點銲(50KVA),經由不同的製程參數,找出點銲相對最佳製程參數。在相對最佳製程參數條件下,經由拉伸試驗,探討母材的拉剪力強度分佈,再藉由韋伯可靠度分析,討論該製程的可靠度。
    經研究發現,厚度1.0mm的5052-H32鋁合金之最佳製程參數為銲接電流17.1KA,電極加壓力130kgf,通電時間為13cycles、17cycles、21cycles。此外,由銲核微觀組織與微硬度試驗得知,銲核附近組織分成母材、熱影響區及重熔凝固區,母材的微硬度值最大,重熔區的微硬度值次之,而熱影響區的微硬度值最小。
    將點銲試片作拉剪強度之可靠度分析,其中韋伯二參數之m值介於2.45與10.96之間,由於可靠度韋伯模數大於1,屬於磨耗型破壞,證明使用50KVA單相交流點銲機點銲接合5052-H32鋁合金有其適用性。

    5052-H32 aluminum alloys, with the effects of resisting weather and its proper intensity, has the advantage of applying to the outside plate of cars. Besides, due to the prosperous development of 3C(computer, communication, consumptive electronic product) in Taiwan, 5052-H32 aluminum alloys have the qualities of light weight, proper intensity, not affecting communication and not conducting magnetic, so it is noticed in the applicative field.
    5052-H32 aluminum alloys, used in the research, is aluminum- magnesium alloys. Through processing hardness and steady treatment, its intensity is medium, matching the AC spot welding machine . In the best welding parameter, by the test of tensile-sheer strength ,we studied the rang of tensile-sheer strength, and then by analyzing reliability , we discussed the reliability of welding parameter.
    After studying, we discovered that the best welding parameter of 1.0mm’s 5052-H32 aluminum alloy is 17.1KA welding current, 130kgf electrode force, 13cycles, 17cycles, 21cycles holding time.
    In addition, from the micro-structure of nugget and the test of micro-hardness, the structure around nugget is divided into base material, heat-affected zone(HAZ) and re-melted zone. The micro-hardness value of base material is the largest, the micro-hardness value of re-melted zone is the second, and the micro-hardness value of HAZ is the smallest.
    The Weibull modulus, m, of the welding plate which is used to test the intensity of tensile-shear strength is between 2.45 and 10.96. Under all conditions, Weibull modulus, m, is over 1 and it’s wear-out mode destruction, which proves that it is practical to use 50KVA AC spot welding machine to welded 5052-H32 aluminum alloys.

    中文摘要....................... Ⅰ 英文摘要....................... Ⅱ 總目錄........................ Ⅳ 表目錄........................ Ⅵ 圖目錄........................ Ⅸ 第一章 前言..................... 1 第二章 文獻探討................... 3 2-1 鋁合金之特性及分類.............. 3 2-2 5252鍛造鋁合金之特性.............4 2-3 鋁合金的銲接特性............... 6 2-4 點銲銲接原理................. 9 2-5 可靠度工程分析................ 12 第三章 實驗方法與步驟................ 30 3-1 實驗流程.................. 30 3-2 實驗設備................... 30 3-3 材料的選用與準備............... 30 3-4 基礎製程參數................. 31 3-5 機械性質測試................. 32 3-6 金相組織觀察................. 32 3-7 伯模三參數的求法............... 33 第四章 實驗結果................... 39 4-1 製程參數對拉剪強度之影響........... 39 4-2 微觀組織及銲核尺寸量測............ 41 4-3 點銲條件與拉剪強度間之韋伯解析........ 43 第五章 討論..................... 74 5-1 最佳製程參數之確定.............. 74 5-2 拉剪強度與微觀組織之關係........... 74 5-3 韋伯分佈解析法之妥當性............ 75 5-4 韋伯參數值的推求與結果應用.......... 76 5-5 位置參數在韋伯可靠度中的影響......... 77 5-6 形狀參數與決策................ 79 第六章 結論..................... 87 參考文獻....................... 89 表目錄 表2-1 鋁合金編號及其主要成份............. 19 表2-2 鋁合金的熱處理方式及命名系統......... 20 表2-3 5052-H32鋁合金之機械性質........... 21 表2-4 代表性鋁材之適銲性.............. 22 表2-5 各種金屬之物理性質.............. 22 表2-6 電阻點銲的缺點及改善方案........... 23 表2-7 電極材料之物理及機械性質........... 25 表3-1 熔接電流實測值................ 38 表3-2 電極加壓力實際量測值............. 38 表4-1 通電時間與銲核尺寸之關係(鈑厚1.0mm,銲接電流 17.1KA,電極加壓力130kgf).......... 53 表4-2 電極加壓力與銲核尺寸之關係(鈑厚1.0mm,銲接電流17.1KA,通電時間17cycles)........... 53 表4-3 通電時間與銲核尺寸之關係(鈑厚1.2mm,銲接電流 17.1KA,電極加壓力130kgf).......... 54 表4-4 電極加壓力與銲核尺寸之關係(鈑厚1.2mm,銲接電流17.1KA,通電時間17cycles)........... 54 表4-5 通電時間與銲核尺寸之關係(鈑厚1.34mm,銲接電流 17.1KA,電極加壓力130kgf).......... 55 表4-6 電極加壓力與銲核尺寸之關係(鈑厚1.34mm,銲接電流17.1KA,通電時間17cycles)........... 55 表4-7 通電時間與銲核尺寸之關係(鈑厚1.46mm,銲接電流 17.1KA,電極加壓力130kgf).......... 56 表4-8 電極加壓力與銲核尺寸之關係(鈑厚1.46mm,銲接電流17.1KA,通電時間17cycles)........... 56 表4-9 通電時間改變與拉剪強度之韋伯可靠度分析結果(鈑厚1.46mm,銲接電流17.1KA,電極加壓力130kgf)未考 慮位置參數.................. 65 表4-10 通電時間改變與拉剪強度之韋伯可靠度分析結果(鈑厚1.46mm,銲接電流17.1KA,電極加壓力130kgf)已考 慮位置參數.................. 65 表4-11 電極加壓力改變與拉剪強度之韋伯可靠度分析結果 (板厚1.0mm,銲接電流17.1KA,通電時間17cycles) 未考慮位置參數................ 71 表4-12 電極加壓力改變與拉剪強度之韋伯可靠度分析結果 (板厚1.0mm,銲接電流17.1KA,通電時間17cycles) 已考慮位置參數................ 71 表5-1 位置參與韋伯模數之關係(改變通電時間).... 81 表5-2 位置參與韋伯模數之關係(改變電極加壓力).... 81 表5-3 位置參數153kfg之韋伯可靠度分析結因結果(厚度1.0mm,銲拉電流17.1KA,電極加壓力130kgf)...... 82 表5-4 位置參數133kfg之韋伯可靠度分析結因結果(厚度1.0mm,銲拉電流17.1KA,通電時間17cycles)...... 84 圖目錄 圖2-1 Al-Mg合金中鎂含量與機械性質相互之關係.... 21 圖2-2 電阻點銲的原理................ 24 圖2-3 電阻發熱之原理................ 24 圖2-4 機率密度函數f(t)與故障率之定義......... 26 圖2-5 機率密度函數f(t)與可靠度R(t)定義........ 26 圖2-6 故障型態的種類................ 27 圖2-7 韋伯模數m值與機率密度函數f(x)的關係..... 28 圖2-8 韋伯模數m值與可靠度R(x)的關係........ 28 圖2-9 不同尺度參數η與機率密度函數f(x)的關係..... 29 圖2-10 不同位置參數t0與機率密度函數f(x)的關..... 29 圖3-1 實驗流程圖.................. 36 圖3-2 拉伸試驗試片規格............... 37 圖3-3 銲核的微硬度測試區.............. 37 圖4-1 鈑厚1.0mm之通電時間及拉剪強度變化...... 48 圖4-2 鈑厚1.2mm之通電時間及拉剪強度變化...... 49 圖4-3 鈑厚1.34mm之通電時間及拉剪強度變化...... 50 圖4-4 鈑厚1.46mm之通電時間及拉剪強度變化...... 51 圖4-5 銲核附近組織示意圖.............. 52 圖4-6 不同通電時間下銲核變化的情形(板厚1.0mm,銲接 電流17.1KA,電極加壓力130kgf)........ 57 圖4-7 不同電極加壓力下銲核變化的情形(板厚1.0mm,銲接 電流17.1KA,通電時間17cycles)........ 58 圖4-8 通電時間改變影響母材微硬度值分佈狀況(板厚1.0mm ,銲接電流17.1KA,電極加壓力130kgf)..... 59 圖4-9 不同通電時間之拉剪強度分佈圖(板厚1.0mm,銲接電 流17.1KA,電極加壓力130kgf)......... 60 圖4-10 不同電極加壓力之拉剪強度分佈圖(板厚1.0mm,銲接 電流17.1KA,通電時間17cycles)........ 62 圖4-11 通電時間變化拉剪力強度之韋伯分佈圖(板厚1.0mm, 銲接電流17.1KA,電極加壓力130kgf)末考慮位置參數...................... 64 圖4-12 通電時間變化拉剪力強度之韋伯分佈圖(板厚1.0mm, 銲接電流17.1KA,電極加壓力130kgf)已考慮位置參數...................... 64 圖4-13 通電時間變化與韋伯模數關係圖(板厚1.0mm,銲接 電流17.1KA,電極加壓力130kgf)未考慮位置參數. 65 圖4-14 通電時間變化與韋伯模數關係圖(板厚1.0mm,銲接 電流17.1KA,電極加壓力130kgf)已考慮位置參數. 65 圖4-15 不同通電時間之拉剪強度的破壞率曲線(板厚1.0mm ,銲接電流17.1KA,電極加壓力130kgf)..... 67 圖4-16 不同通電時間之拉剪強度的可靠度圖形(板厚1.0mm ,銲接電流17.1KA,電極加壓力130kgf)..... 67 圖4-17 不同通電時間之拉剪強度的機率密度函數圖形(板厚 1.0mm,銲接電流17.1KA,電極加壓力130kgf).. 68 圖4-18 不同的電極加壓力拉剪力強度之韋伯分佈圖(板厚1.0 mm,銲接電流17.1KA,通電時間17cycles)未考慮位 置參數.................... 69 圖4-19 不同的電極加壓力拉剪力強度之韋伯分佈圖(板厚1.0 mm,銲接電流17.1KA,通電時間17cycles)已考慮位 置參數.................... 69 圖4-20 電極加壓力變化與韋伯模數關係圖(板厚1.0mm,銲接 電流17.1KA,通電時間17cycles)未考慮位置參數.. 70 圖4-21 電極加壓力變化與韋伯模數關係圖(板厚1.0mm,銲接 電流17.1KA,通電時間17cycles)已考慮位置參數.. 70 圖4-22 不同電極加壓力之拉剪強度的破壞率曲線(板厚1.0 mm,銲接電流17.1KA,通電時間17cycles).... 72 圖4-23 不同電極加壓力之拉剪強度的可靠度圖形(板厚1.0 mm,銲接電流17.1KA,通電時間17cycles).... 72 圖4-24 不同電極加壓力之拉剪強度的機率密度函數圖形(板 厚1.0mm,銲接電流17.1KA,通電時間17cycles).. 73 圖5-1 當銲核直較小時,試片為剪斷的破壞方式(板厚1.0mm ,銲接電流17.1KA,電極加壓力130kgf,通電時間13 cycles).................... 80 圖5-2 當銲核直過大時,試片從熱影響區撕裂的破壞方式(板 厚1.0mm,銲接電流17.1KA,電極加壓力130kgf,通 電時間21cycles)................ 80 圖5-3 不同的通電時間之拉剪強度韋伯分佈圖(位置參數153kgf).................... 82 圖5-4 不同通電時間之拉剪強度之機率密度函數曲線圖(位 置參數153kgf)................ 83 圖5-5 不同通電時間之拉剪強度之可靠度關係圖(位置參數153kgf).................... 83 圖5-6 不同通電時間之拉剪強度之故障率函數曲線(位置參數153kgf).................... 84 圖5-7 不同電極加壓力之拉剪強度韋伯分佈圖(位置參數133kgf).................... 85 圖5-8 不同電極加壓力之拉剪強度機率密度函數關係圖(位置 參數153kgf).................. 85 圖5-9 不同電極加壓力之拉剪強度可靠度關係圖(位置參數133kgf).................... 86 圖5-10 不同電極加壓力之拉剪強度與故障率關係圖(位置 參數133kgf).................. 86

    1.陳錦文,不同製程參數對鋁合金6061電阻點銲性質之影響,國立臺灣師範大學工業教育系碩士論文,民國89年,頁1~4。
    2.Althouse A.D.撰,龔伯康譯,現代銲接學,民國60年,頁507。
    3.奧田淹夫,點銲熔接入門,昭和61,頁183~196。
    4. A.K.Vasudevan and R.D.Doherty, ”Aluminum Alloys-Contemporary Research and Applications”, Academic Press Inc, 1989, pp.4~104, pp.171~187.
    5.”Metals Handbook”, Vol.12, 10thed, 1990, pp.90~91, pp.102~103. 
    6.A.Gean, A.Westgate, J.Kucza and J.C.Ehrstrom, “Static and Fatigue Behavior of Spot Welding 5182-O Aluminum Alloy sheet”, Welding Research Supplement, March, 1999, pp.80~86.
    7.J.Senkara and H.Zhang, “Cracking in Spot Welding Aluminum Alloy AA5754”, Welding Research Supplement, July, 2000, pp.194~201.
    8.L.Xu, J.A.Khan, “Nugget Growth Model for Aluminum Alloys during Resistance Spot Welding”, Welding Research Supplement, November, 1999, pp.367~372.
    9.Bob Irving, ”Welding the Four Most Popular Aluminum Alloys”, Welding Journal, February, 1994, pp.51~55.
    10.姜家斌,鋁合金5052與6061應用隋氣金屬電弧銲對接之研究,國立交通大學機械系碩士論文,民國84年,頁3~6。
    11.Donald R. Askeland,陳皇鈞譯,材料科學與工程,曉園出版社,民國78年,頁365~373。
    12.H.C. Stumpf, “Progress Report”, Alcoa Laboratories, 1996. 
    13.蔡金峰,”高強度鋁合金之銲接冶金”,金工21卷3期,民國76年6月,頁14~21。
    14.陳國堅,”鋁合金銲接工作法”,銲接與切割6卷2期,民國85年3月,頁197~214。
    15.黃祥生,Al-Mg-Zn合金電阻點銲微觀組織及拉伸強度變動之間關係探討,國立臺灣師範大學工業教育系碩士論文,民國90年,頁8~10。
    16.Bomface E. Rossi, ”Welding Engineering”, The Welding Journal American Welding Society, New York, 1954.
    17.American Welding Society, ”Welding Handbook”, Vol.4, pp.322.
    18.黃國聰,Al-Mg-Si合金電阻點銲微觀組織及拉伸強度變動之間關係探討,國立臺灣師範大學工業教育系碩士論文,民國90年,頁21~23。
    19.野中保雄,陳耀茂譯,可靠度數據的蒐集與整理方法性,大學圖書供應社出版,1992,第3~4章。
    20.Faucher B and Tyson W.R, “On the Determination of Weibull Parameters”, Journal of Material Science Letters, Vol.7, 1988, pp.1195~1200.
    21.陳右昇,ADC12壓鑄鋁合金共振疲勞壽命之可靠度分析,成功大學材料系碩士論文,民國89年,頁24~27。
    22.X.D.Li and L.Edwards, ”Theoretical Modeling of Fatigue Threshold For Aluminum Alloys”, Engineering Fracture Mechanics, Vol.54, NO.1, 1996, pp.35~45. 
    23.P.D.TO’Conner, ”Practical Reliability Engineering”, 3rdEd, John Wiley & Sons, New York, 1986, Chapter.1~6.
    24.信賴性管理便覽編輯委員會編,品質保證之信賴性管理便覽,日本規格協會出版,1985,頁45~50。
    25.蘇貴芳,相關與迴歸分析,復漢出版社,1991,第2章。
    26.蘇鎮乾、王良哲,”鋁及鋁合金銲接技術”,機械月刊16卷8期,民國79年8月,頁109~114。
    27.陳國堅,”鋁合金銲接工作法”,銲接與切割6卷2期,民國85年3月,頁197~214。
    28.Welding Process, “Resistance & Solid State Welding & Other Joining Processes”, Welding Handbook, Vol.3, Seventh Edition, 1980, pp.52~53.
    29.Stanley W.A, ”Resistance Welding Design Tooling and Applications”, New York, 1950, pp.1~3.
    30.Reed-Hill R.E, “Physical Metallurgy Principle”, PWSKENT Publishing Company, New York, 1992.
    31.Mazzolanni F.M, “Aluminum Alloy Structure”, Boston Pitman Publishing Inc, 1985.
    32.Maurice L.S, “Behavior and Design of Aluminum Structure”, McGraw-Hill Inc, New York, 1992, pp.34.

    QR CODE